
An Analysis of OpenSSL’s Random Number
Generator

Falko Strenzke

cryptosource GmbH,
Darmstadt, Germany

fstrenzke@cryptosource.de

Abstract. In this work we demonstrate various weaknesses of the ran-
dom number generator (RNG) in the OpenSSL cryptographic library. We
show how OpenSSL’s RNG, knowingly in a low entropy state, potentially
leaks low entropy secrets in its output, which were never intentionally
fed to the RNG by client code, thus posing vulnerabilities even when in
the given usage scenario the low entropy state is respected by the client
application. Turning to the core cryptographic functionality of the RNG,
we show how OpenSSL’s functionality for adding entropy to the RNG
state fails to be effectively a mixing function. If an initial low entropy
state of the RNG was falsely presumed to have 256 bits of entropy based
on wrong entropy estimations, this causes attempts to recover from this
state to succeed only in long term but to fail in short term. As a result,
the entropy level of generated cryptographic keys can be limited to 80
bits, even though thousands of bits of entropy might have been fed to
the RNG state previously. In the same scenario, we demonstrate an at-
tack recovering the RNG state from later output with an off-line effort
between 282 and 284 hash evaluations, for seeds with an entropy level
n above 160 bits. We also show that seed data with an entropy of 160
bits, fed into the RNG, under certain circumstances, might be recov-
ered from its output with an effort of 282 hash evaluations. These results
are highly relevant for embedded systems that fail to provide sufficient
entropy through their operating system RNG at boot time and rely on
subsequent reseeding of the OpenSSL RNG. Furthermore, we identify a
design flaw that limits the entropy of the RNG’s output to 240 bits in
the general case even for an initially correctly seeded RNG, despite the
fact that a security level of 256 bits is intended.

1 Introduction

The ability to generate high entropy random numbers is crucial to the genera-
tion of secret keys, initialization vectors, and other values that the security of
cryptographic operations depends on. Thus, random number generators (RNGs)

c© IACR 2016. This article is the final version submitted by the author to the IACR
and to Springer-Verlag on 2016-02-19. The version published by Springer-Verlag is
available at <DOI pending>

are the backbone of basically any cryptographic architecture. Numerous works
have already dealt with the security of RNGs of operating systems [1],[2],[3],[4].
In [5], the predictability of OpenSSL’s [6] RNG on the Android [7] operating
system is investigated. That work reveals the problem of a too low entropy level
of the OpenSSL RNG output as a consequence of its weak seeding through the
operating system entropy sources at boot time.

In contrast, in the present work, we analyse the security features of the Open-
SSL RNG itself. Specifically, we analyse the behaviour of the RNG in high and
low entropy states. In a low entropy state, i.e. before the RNG has been properly
seeded, we certainly know it to be unable to produce cryptographically secure
random numbers – but we also expect it not to do any damage if we respect this
condition by refraining from using it in cryptographic algorithms. Furthermore,
in such a situation, we expect the RNG to produce cryptographically strong
output after it has been reseeded with fresh high entropy seed data. As we shall
see, neither property is fulfilled by the OpenSSL RNG.

We wish to point out that we are not addressing the RNG recovery problem
by continuous entropy collection, which is for instance the subject of [8]. The
OpenSSL RNG does not even attempt this, but solely relies on reseeding by the
client application. The problems discussed here are in the context of the explicit
invocation of these methods for reseeding the RNG from the client application.

As a very fundamental result, we prove that even when seeded initially with
a 256 bit entropy seed, the RNG output may only have an entropy level of 240
bits for up to several hundreds of output bytes. The remainder of our findings is
concerned with the behaviour of the RNG when it is initially in a low entropy
level. We show that in this state, various functions of OpenSSL silently feed data
to the RNG that is potentially secret and of low entropy. As a consequence, the
RNG’s function for outputting low entropy random numbers, which is available
before the complete seeding of the RNG, is prone to leak these low entropy
secrets. The potentially leaked values we have identified are keys of weak ciphers
such as DES and the previous contents of buffers overwritten with random bytes.
The latter is problematic in that wiping secret data by overwriting them with
(pseudo) random data is an established practice.

Furthermore, we analyse the recovery ability of the RNG from a low entropy
state. There are two scenarios in which this becomes relevant: first, the RNG
might falsely presume a high entropy state based on false entropy estimations by
the client application feeding it with seed data, or during the automatic seeding
from the operating system RNG, which OpenSSL performs for instance on Linux
systems. This makes our findings relevant for embedded system that feature only
a small entropy level in their operating system RNG at boot time, for instance
if they rely on reseeding the OpenSSL RNG by using a seed-file after the initial
automatic seed from the operating system RNG. The second scenario is that
though the RNG was seeded with correctly estimated high entropy data, its
current state is revealed to an attacker through a break-in into the system. The
latter scenario mainly applies to standard platforms such as servers or personal
computers. In either scenario, it is vital that through the addition of further high

entropy seeding data to the RNG state an immediate recovery is possible in the
sense that subsequently generated output will also be of high entropy. We find
that this recovery essentially fails: when the RNG is in a state with low entropy
level close or equal to zero, we show that despite the feeding of a arbitrarily
high amount of entropy to the RNG, various attacks are possible that allow to
predict previous and future output of the RNG with a computational effort of
around 280 hash evaluations.

The adversarial model underlying all the weaknesses presented in this work
is that of a passive adversary who receives output from the attacked RNG and
wishes to predict previous or future RNG output, or in some cases even the seed
values. Most of the weaknesses identified in this work, in order to be actually
exploited, demand a computational effort beyond what is believed be practi-
cal today even for computationally strong adversaries but might easily become
feasible within a decade. Due to the entirely passive nature of the attacks, it
would be possible for an adversary to record the RNG output and carry out the
computational part of the attack at a later point in time when he has gained
sufficient computational power.

All our results are based on the analysis of OpenSSL version 1.0.2a, but to
the best of our knowledge apply to all versions, as the RNG is legacy feature of
the library.

2 API, Life Cycle of OpenSSL’s RNG, and the Associated
Vulnerabilities

In this section we describe the RNG’s API functions that are relevant to our
analysis and how they relate to its life cycle states. The purpose of this descrip-
tion is to give a high level understanding of RNG’s operation as it is necessary
to understand the low entropy secret leakage issues discussed in Section 3 and
introduce our formal life cycle states that are relevant for the remaining issues.
Furthermore, we give an overview of the vulnerabilities presented in this work
and relate them to the respective life cycle states where they are manifest. The
core cryptographic operation of the RNG will be introduced later in Section 4.

The implementation of the RNG is found in the file md rand.c. It defines the
default RNG to be used in OpenSSL, though in principle the framework allows
for switching to different RNG implementations provided by the user. As any
purely software-based RNG it is based on a pseudo random number generator
(PRNG). The API of functions related to OpenSSL’s RNG are described in the
respective manual page [9]. The functions relevant to our problem domain are
described in the following.

void RAND_add(const void *buf, int num, double entropy)

“adds” the entropy contained in buf of length num to the RNG’s internal state,
where entropy shall be an estimate of the actual entropy contained in buf. The
newly fed data modifies the RNG’s state such that any subsequently generated
random output will be affected by it. In this work we show that the claimed

“addition” of entropy suffers from a severe weakness. However, for the issue of
low entropy secret leakage, this feature is irrelevant.

void RAND_seed(const void *buf, int num) is a wrapper for RAND add. It
calls that function with entropy = num, i.e. it expects the seed data to have
maximal entropy.

int RAND_poll() draws entropy from the operating system’s randomness
sources, e.g. /dev/random on Linux, and feeds it to the RNG.

int RAND_load_file(const char *filename, long max_bytes) just loads a file
and feeds up to max bytes from that file to the RNG using RAND add. Depending
on the operating system, it feeds some further data to the RNG, but this is
irrelevant to the issues discussed in this work.

int RAND_bytes(unsigned char *buf, int num) outputs num random bytes
into buf. If the entropy level of the RNG, computed as the sum of the estimates
provided by the calls to RAND add, is less than the specified minimum of 256 bits,
this function returns with an error code.

int RAND_pseudo_bytes(unsigned char *buf, int num)

performs the same operation for the random output generation as RAND bytes,
except that it also generates output if the minimum entropy level has not been
reached.

unseeded

seeded

RAND add, seed
entropy = 256 bits

falsely seeded

compromise

reseeded

RAND add, seed
entropy = 256 bits

RAND add, seed
with low entropy

RAND pseudo bytes �
RAND bytes

stirring on first call
to RAND bytes

stirring never done

Fig. 1. Depiction of the life cycle states of OpenSSL’s RNG.

Figure 1 shows the formalized life cycle states of the RNG. It always starts in
the state unseeded. In this state, it has zero entropy. If on the system a random
device such as /dev/random on Unix is available, a call to RAND bytes or RAND -

pseudo bytes will transfer the RNG automatically into the state seeded or
falsely seeded by drawing 32 bytes of randomness from that device with a
presumed entropy of 256 bits and feeding them to the RNG through a call to

RAND add. The distinction between seeded and falsely seeded is not reflected
by the RNG state directly, but only implicitly through the quality of the seed.
In case of a seed with considerably lower entropy than 256 bits drawn from
the random device, we identify the resulting state as falsely seeded. Another
possibility of entering this state is through a compromise of the seeded state
through a break-in into the system. Recovery from the falsely seeded state is
attempted by feeding the RNG with a high entropy seed.

The resulting state is referred to as reseeded. It is distinguished from the
seeded state by the fact that the so-called “stirring” operation, which dis-
tributes the entropy within the RNG state, is never carried out in this state.
This operation is executed in the first call to RAND bytes in the seeded state
and never again after that. But, as we shall see, it is essential that it is car-
ried out after a call to RAND add for the distribution of the entropy in the RNG
state and its safety. The details of these considerations will be given in the later
sections when we turn to the core cryptographic design of the RNG and also
explain the exact effect of the stirring operation.

We want to point out how easy it is to get into the reseeded state on a
device with low boot time entropy provided by the operating system RNG. It is
for instance achieved through the following sequence:
RAND pseudo bytes()
RAND load file().
The first call triggers the automatic initial seeding of the RNG. The second call
attempts to seed the RNG using a high entropy seed file.

Table 1 shows an overview of our contributions. In the first column, following
a short identifier for easier referencing of the respective issue, a brief description
is given. In the next column the state in which the issue arises is listed. The
remaining two columns specify the condition under which the issue arises and
the number of the section within this work that explains the issue. LESLI is the
abbreviation of “low entropy secret leakage issue”. The label ELO. . . is based on
the abbreviation of “entropy limitation of output”. The ELO-issues apply to the
roughly 1kB of output generated after the reseeding. The last two issues allow
an attacker to recover the RNG state, if he gets output at a specific “position”
after the reseeding. Here, “position” refers to an offset determined by the sum
of length parameters to later calls to either RAND add or RAND bytes.

3 Low Entropy Secret Leakage in Low Entropy States of
the RNG

A low entropy state of an RNG certainly makes it impossible to generate secure
keys or to carry out cryptographic operations safely that depend on generation
of random values. But there is no indication for application developers that are
using a cryptographic library through its API to assume that it is generally
unsafe either to use functions of the library appearing totally disjoint from the
RNG functionality or to make use of the RNG for purposes where the low en-
tropy state would not be a problem from a cryptographic perspective. Note that

Issue State Condition Section

LESLI: low entropy secret leakage in
output of RAND pseudo bytes

unseeded,
falsely
seeded

attacker has access to out-
put of RAND pseudo bytes

3

ELO-240: entropy limitation of the
output of RAND bytes to 240 bits

seeded attacker has access to some
output from the same call to
RAND bytes as that which he
wishes to predict

5

ELO-80: entropy limitation of the out-
put of RAND bytes to 80 bits

reseeded attacker has access to some
output from the same call to
RAND bytes as that which he
wishes to predict

6

ELO-160: entropy limitation of the
output of RAND bytes to 160 bits

reseeded attacker has access to out-
put after the reseeding

6

DEJA-SEED: recovery of the seed
data of entropy of 160 bits and the
resulting RNG state with an effort of
about 282 hash evaluations given that
the seed is prepended with a known
value of a specific length

reseeded attacker has access to out-
put after the reseeding at a
specific offset

7.1

DEJA-STATE: for instance recovery
of the RNG state after a 320-bit en-
tropy reseed with an effort of 284 hash
evaluations

reseeded attacker has access to out-
put after the reseeding at a
specific offset

7.2

Table 1. Overview of the identified weaknesses.

OpenSSL’s function RAND pseudo bytes explicitly has the purpose of generat-
ing output before the RNG is sufficiently seeded. In the following sections we
learn that OpenSSL violates the above assumptions, potentially resulting in the
leakage of various secrets through the RNG output.

3.1 The General Problem

The basis of the low entropy secret leakage problems we investigate in the fol-
lowing, which we refer to as LESLI, is a fundamental one: given an RNG in
a low entropy state, any further seed data fed to the RNG to increase its en-
tropy, is leaked through the RNG output if the resulting state still fails to have
a sufficient entropy level. The attack is simply carried out by iterating through
all the possible seed inputs, generating the resulting outputs in the attacker’s
own instance of the RNG, and comparing these outputs to those of the attacked
device. If they are equal, the seed values used in that attack iteration are the
actual values used to seed the attacked RNG. Thus, any secret value that was
part of the seed data is recovered. A requirement for this attack to work is that
the number of output bits from RNG is approximately at least as high as the
number of entropy bits in its state from the attacker’s point of view. In general,
the expectation value for the number of collisions, i.e. the number of wrong input
values that map to the output value identified as correct, is

e =
2n − 1

2l
, (1)

where n is the entropy of the input in bits and l is the size of the output in bits.
This relation holds under the assumption that the mapping of RNG input to its
output is a random mapping. Assuming n = l, we find that on average there will
be one collision.

On the basis of these considerations, it is rather doubtful that OpenSSL’s
manual pages suggest the feeding of low entropy secrets such as user-entered
passwords through the function RAND add() to increase the RNG’s entropy level.
They state: “RAND add() may be called with sensitive data such as user entered
passwords. The seed values cannot be recovered from the PRNG output”[10].
This is, as we have seen above, only true if the resulting entropy level of the RNG
is sufficiently high.1 From this analysis we learn that the feeding of low entropy
secrets to RNGs such as that of OpenSSL is a risky and doubtful approach. It is
only safe in situations where the RNG already has an entropy level that is secure
with respect to brute force state recovery attacks – and in these situations it is
needed the least.

However, to avoid the same-state problem, the feeding of low entropy data
is indeed useful. Given that two systems share the same but otherwise high
entropic RNG state, the feeding of a single bit with value zero to the first RNG
and one bit with value one to the second, both RNGs will be in a secure state –

1 Generally, an entropy of 80 bits is regarded as the minimum to achieve at least short
term security.

as long as they don’t appear as adversaries to one another. OpenSSL uses this
approach to be secure with respect to the well known process-forking problem
of RNGs by feeding the process-ID to the RNG before generating output [11].

But even forearmed with this knowledge, not following OpenSSL’s manual
pages’ encouragement to feed low entropy secrets to the RNG, we run into prob-
lems, as various OpenSSL API functions silently feed secret data to RNG, as we
explain in the following.

3.2 Leakage of Secrets Overwritten with Random Data

The first leakage problem we present occurs in the following scenario: Assume
an application is developed for an embedded system using OpenSSL as the cryp-
tographic library. The system designers are aware of the fact that they might
have a low entropy state problem in OpenSSL’s RNG. However, they only use
OpenSSL for the following purposes (possibly they might later seed it with a
fresh high-entropy seed and use it also for different purposes): They overwrite
short PIN numbers the system temporarily stores during user interactions. They
follow a common security advice to overwrite these critical secrets with random
numbers using OpenSSL’s RAND pseudo bytes function. This measure to wipe
secret data is not necessarily useful in all application contexts. However, it is
useful when one cannot exclude the possibility of working on memory-mapped
files[12]. Furthermore it can be useful to prevent compiler optimizations from
removing the wiping procedure [13]2. Another reason for this measure is side-
channel security: using a fixed byte value such as zero to overwrite the secret
bytes could result in leakage of their Hamming weights through power consump-
tion or electromagnetic emission.

Furthermore, in our scenario, we assume that the application uses the RNG
to generate weak random numbers with calls to RAND pseudo bytes, which are
output by the device, for instance as nonces for cryptographic purposes.

Neither usage of the potentially predictable random numbers is a problem
from a cryptographic point of view: given that there is at least some minimal
entropy in the RNG state, side-channel attacks will be severely complicated and
also the other two purposes of the random overwriting will not be impeded.
Nonce values only need to have the property to be non-repetitive, a property
that is not affected by the low entropy state problem even if the RNG state was
completely known to the attacker – at least until a reboot that might incur the
same-state problem.

However, in the described usage scenario, the secret PIN is leaked through
the random numbers output by the device. This is due to the fact that the
RAND add function uses the initial content of the memory area to be overwritten
as an additional seed value. For the detailed description of function of RAND add,

2 In that reference randomizing the target buffer is not suggested, however, since calls
to an RNG function have a side effect (on the RNG state), it is almost impossible for
the compiler to remove that call. OpenSSL itself uses a similar approach internally,
though not by using an actual RNG.

which shows how exactly the initial buffer contents affect the PRNG state, refer
to Section 4. The RNG’s state becomes dependent on the PIN number, and the
attacker simply has to execute a brute force search on the joint input space of
all possible RNG states before the call to RAND add and all possible PIN values
as additional seeds and match the resulting RNG output to the nonces recorded
from the device under attack.3

Furthermore, despite the realistic scenario where the RAND pseudo bytes

function is used to wipe secrets from RAM, there is certainly also a poten-
tial leakage problem when previously uninitialized buffers are overwritten with
random bytes. Uninitialized buffers on the heap or stack may also by chance
contain sensitive low entropy data from previous operations of the application.
Which memory locations are reused in parts of the program on the heap or stack
is often deterministic or under the influence of the attacker. In addition, a pro-
gram may implement buffer reuse at the source code level as an optimization
technique.

3.3 Leakage of DES Keys in PKCS#8 Conversion

In the file evp pkey.c, in a function used for converting private keys to PKCS#8
format, RAND add is called with the key data as a seed. Given that DES keys,
that might otherwise be used in a secure cryptographic construction, can be
brute force attacked, they are at risk to be leaked through RAND pseudo bytes.

4 Detailed Description of OpenSSL’s RNG

Algorithm 1 Simplified algorithmic description of RAND add

Input: md0, s, p, q, b = (b0||b1|| . . . ||bn−1) where each bi is 20 bytes long except for
the final one which is potentially shorter

Output: md0, s, p, q
1: for i = 1 to n do
2: t = size(bi−1)− 1
3: mdi = SHA1(mdi−1||s[p : p + t mod 1023]||bi−1)
4: s[p : p + t mod 1023] = s[p : p + t mod 1023]⊕mdi[0 : t]
5: p = p + t + 1 mod 1023
6: end for
7: md0 = mdi ⊕md0

8: q = min(q + size(b), 1023)
9: return md0, s, p, q

3 Note that the usage of uninitialized memory for the purpose of random number gen-
eration can lead to an even greater threat, namely the compiler’s decision to remove
subsequent operations on variables that become “tainted” by the uninitialized data
[14]. However, this does not seem to apply to OpenSSL’s implementation [15].

m
d
′0

s0 . . . s2 s3 s4 . . .

p: initial RAND add

b0 b2. . . r0 r1

SHA1 SHA1

p: final RAND add,
initial RAND bytes

p: final RAND bytes

m
d
0 SHA1

m
d
1 SHA1

m
d
2 SHA1

m
d
3

Fig. 2. Depiction of actions induced by a call to function RAND add and a subse-
quent call to RAND bytes. The blocks bi, s0 to s2 have a length of 20 bytes each,
ri, s3 and s4 have a length of 10 bytes each.

Algorithm 2 Simplified algorithmic description of RAND bytes

Input: md0, s, p, q, r = (r0||r1|| . . . ||rn−1) where each ri is 10 bytes long except for
the final one which is potentially shorter

Output: md0, s, p, r = (r0||r1|| . . . ||rn−1)
1: for i = 1 to n do
2: mdi = SHA1(mdi−1||ri−1||s[p : p + 9 mod q]
3: ri−1 = mdi[10 : 10 + size(ri−1)− 1]
4: s[p : p + 9 mod q] = s[p : p + 9 mod q]⊕mdi[0 : 9]
5: p = p + 10 mod q
6: end for
7: md0 = SHA1(mdi||md0)
8: return md0, s, p, r

Algorithm 3 The stirring operation executed within RAND bytes

1: i = 0
2: c = c[0 : 19] // constant
3: while i < 1023 do
4: call RAND add with r = c
5: i = i + 20
6: end while

In this section we give a complete description of the OpenSSL’s RNG, since
this is necessary to explain the further vulnerabilities presented in this work.
However, we omit some details such as the seeding of the RNG with the process-
ID (PID) and certain counter values. The PID generally does not feature any
entropy since PIDs are predictable on Linux [16], and the counters only depend
on the number of bytes provided in the calls to RAND add and RAND bytes and
thus can be assumed to be known from the application program’s source code and
the sequence of high level operations. For a description involving these counters,
see [5]. Furthermore, management operations such as checking and updating
the level of the estimated entropy are ignored. Algorithm 1 and 2 provide the
algorithmic descriptions – simplified in this sense – of the functions RAND add and
RAND bytes. First, we explain the symbols used in the algorithmic description.
The RNG state is comprised of four elements: md0 refers to a message digest
of 20 bytes length. The state bytes are an array of 1023 bytes represented by s.
Furthermore, the index of the current state byte is labelled p (corresponds to
the variable state index in the source code) and q is the sum of the number of
state bytes updated by RAND add (corresponds to the code variable state num).
Both algorithms update all four state elements, with the exception that RAND -

bytes does not update q. Both s and md0 have arbitrary starting values as they
use uninitialized memory. However, this can in general not be viewed as reliable
source of entropy. The initial value of p and q is zero. q is increased up to 1023
in each call to RAND add by the number of input bytes. For most of the analyses
we conduct in the following sections q is always equal to 1023, since in the state
reseeded, which will be the starting point for all remaining issues except for
ELO − 240, the previous stirring operation has already increased q to 1023.

Algorithm 1 specifies the cryptographic operations carried out by a call to
RAND add. Apart from the four state elements, it has an additional input b which
represents the seed data. It is partitioned into blocks bi having a size of 20 bytes
each, except for the last block, which has a potentially smaller size. The “size()”
operation returns the size of the respective block in bytes. In the loop, iteratively,
new values of mdi are computed as the SHA1 hash value of the specified elements.
Here “x[y]” indicates the y-th byte of x and “||” denotes concatenation. x[y : z]
is the block formed by the bytes x[y]||x[y + 1]|| . . . ||x[z], where the index z may
also indicate a byte position before y, in which case the wraparound is performed
at the highest byte position of x. During each iteration, up to 20 state bytes are
updated with the iteratively computed mdi. At the end of the operation md0 is
updated as the XOR of the previous value of md0 and the final mdi.

The action of the function RAND bytes is given in Algorithm 2. Additionally
to the state elements, the memory area r to be filled with random bytes is an
input and output value. Here, r is partitioned into blocks ri, each having a size
of 10 bytes except for the last block, which again has a potentially smaller size.
After the computation of the value mdi in each iteration of the loop, one half of
this byte string is XORed back to the state bytes that were used to feed the hash
function in that iteration, and the other half is written to the 10 byte output
block ri−1. If the final output block is shorter than 10 bytes, a correspondingly

smaller number of bytes is written to it. Finally, the value md0 as part of the
RNG state is updated.

Note that both Algorithms 1 and 2 implement a seamless wraparound when
reaching the end of the state bytes s, so that the beginning and end of this array
do not have any special properties. Algorithm 3 specifies the stirring operation.
As already explained in Section 2, this algorithm is carried out on the first call
to RAND bytes after the RNG state has reached an entropy level of 256 bits
by its own accounting based on the entropy measures provided in the calls to
RAND add. Here, c is a 20 byte constant value. By feeding a total of 1040 bytes
to the RNG, a certain distribution of the entropy in the state s is achieved.

Figure 2 depicts the operations carried out by a call to RAND add and a
subsequent call to RAND bytes. On the bottom, the respective values of p are
indicated: its initial value at the start of RAND add, its value after the execution
of that function, which corresponds to the initial value in the subsequent call to
RAND bytes, and its final value after termination of the latter function. In the
figure, for better readability, the state bytes have been arranged as blocks si.
Note that this partitioning of the state bytes is done dynamically within both
functions starting from the current position indicated by p when they are called.

5 Restriction of the RNG’s Output to an Entropy of 240
Bits

The first design flaw of OpenSSL’s core RNG, which we refer to as ELO-240,
leads to the possibility that generated keys are limited to 240 bits of security
whereas it tries to achieve 256 bit – however, due to lack of documentation, the
intended security level can be only inferred from the source code. In contrast to
further weaknesses reported in this work, this issue arises even when the RNG is
initially seeded with correctly estimated high entropy data before any output is
generated. From a practical point of view, this problem is meaningless, since it
does not allow any practical attacks, not even in the foreseeable distant future,
but it shows us a design flaw of the RNG, which will turn out to be relevant for
the further issues reported in this work. From a strictly formal point of view,
we find that it is commonly agreed that keys with 256 bit security shall be
used for applications where long term security matters, as it is reflected by the
standardized key sizes for AES and elliptic curve keys, and that thus an RNG
should produce output with the corresponding entropy level.

In order to understand how this limitation arises, we consider the following
example. The RNG, in its initial state, is seeded with a 256 bit entropy seed,
the length of which is rather irrelevant as long as it remains considerably shorter
than the state length of 1023 bytes. To simplify things, we assume that the
length of the seed data is 256 bits. As a result of this seeding operation, the
first 32 bytes of the state contain high entropy data, the remaining state bytes
contain zero entropy, and p points to the byte with index 32 (counted from zero).
With a subsequent call to RAND bytes the stirring operation is induced. With
a sequence of calls to RAND add, the stirring operation, Algorithm 3, completely

cycles over all state bytes once, except for the first 17 bytes pointed to by p
before the operation, which are processed twice. During this operation, from
the entropy added into the first 32 bytes, only 160 bits flow into the remaining
state bytes through md0. Accordingly, an attacker could theoretically enumerate
all possible values of the state bytes from position 32 to 1022 by 2160 guesses.
We now assume that a call to RAND bytes is made to draw 42 random bytes
from the RNG. The first ten bytes are generated on the basis of current state
block indicated by p. During the output generation, the new value of mdi is
calculated as md1 = SHA1(md0||rinit0 ||s0), with rinit0 being the initial value of
the output buffer, which we assume to carry no entropy. Half of md1, i.e. 80 bits,
are output as r0. Then the following 10-byte blocks and the 2-byte final block are
computed iteratively in the same manner. Now assume that the first generated
10-byte block, r0, is output to the attacker. This means that the attacker learns
80 bits of md1. Accordingly, the entropy of md1 is reduced to 80 bits from his
point of view. Since all state bytes that flow into the output generation of the
further output blocks r1, r2, and r3 have a total entropy of 160 bits as we have
seen above, and that 80 bits of entropy flow into the generation from md1, the
remaining generated 32 bytes not output to the attacker have an entropy of 240
bits.

Note that this theoretical attack does not apply when the attacker receives
output bytes from one call to RAND bytes and the output value he wishes to
predict from a different call. This is due to the fact that at the end of RAND -

bytes, as given in Algorithm 2, md0 is updated as md0 = SHA1(mdi||md0),
where md0 on the right hand side is another source of entropy, which foils his
knowledge gained through the output r0. Thus, we conclude that this weakness
can be seen as due to a design fault which causes the security of the RNG output
to depend on the call sequence. In reality it may be well possible that a client
application generates multiple symmetric keys for different users or a key along
with the first CBC initialisation vector in a single call to RAND bytes. In the
theoretic view of RNGs, implementation details such as concrete call sequences
to draw random bytes find no regard.

6 Low Entropy Recovery Failure

We now investigate what happens when OpenSSL’s RNG executed the stirring
operation in a low entropy state and the client application subsequently adds
high entropy seed data to the RNG before generating 256 bit cryptographic keys.
The two issues identified in this scenario are ELO-80 and ELO-160.

A principally useful notion for a function to feed entropy to an RNG is that
of a mixing function, defined as follows [2]: A mixing function f guarantees that

H(f(I, S)) > H(S) and H(f(I, S) > H(I),

where H() denotes the Shannon entropy, I the input seed data and S the state of
the RNG. A function adhering to this notion guarantees that it does not reduce

the entropy of the RNG state and that after its operation the state will have at
least the same entropy as the input seed data.

From a purely formal perspective, OpenSSL’s RNG fulfils both requirements.
However, the definition of the mixing function as provided in the reference and
shown above turns out to be of limited usefulness: Given an RNG that uses only
a part of its internal state for the production of output, such as it is the case with
OpenSSL’ RNG, the definition should refer to the entropy of newly generated
output instead of that of the state S. With respect to this adjusted definition
of a mixing function, we will learn that RAND add fulfils the first requirement,
but not the second: when the RNG is in a low entropy state, even after adding
high entropy seed data, the RNG will effectively remain in a low entropy state
in short term, i.e. generate low entropy output.

We develop the following scenario. After an initial entropy update of the
RNG of 32 bytes with a believed entropy of 256 bits, but an actual entropy of
x < 256 bits, the stirring operation is carried out. This causes, following the
analysis from Section 5, the whole state s[0 : 1023] to contain x bits of entropy.
Now we assume that a second call to RAND add is made, this time with a 32 byte
string with the full entropy of 256 bits. After the stirring operation, p pointed to
position 32 + 17 = 59. Thus the high entropy update affects the state bytes s[59]
to s[90], and p afterwards points to s[91]. Now a call is made to RAND bytes for
the output comprised of the 10 byte blocks r0, r1, . . . , ry. The only limitations
of the length of the output is that it may only cause RAND bytes to process low
entropy state bytes, i.e. not to reach the high entropy block starting at position
59 again, and thus can be of a length of several hundreds of bytes. The first three
blocks r0, r1, and r2 are output to the attacker. We now show that he can fully
recover the remaining output r3, r4, . . . , ry with a complexity of 280+x hash
evaluations. The analysis follows that of Section 5.

Through the stirring operation carried out after the initial addition of the x
bit entropy seed, x bits of entropy were distributed to all the state blocks s[i].
After the second high entropy update, only the state bytes s[59] to s[90] hold
256 bits of entropy. In the subsequent call to RAND bytes, the only source of
entropy are md0, carrying 160 bits, and the processed state bytes starting from
s[91]. After having seen output r0, the entropy of md1 is reduced to 80 bits for
the attacker. He now iterates through all the possible values of the unknown
80 bits from md1 and x bits of the initial entropy seed, i.e. a total of 280+x

possibilities. Each guess for the 2x initial states implies a value for state bytes
s[91] through s[1022]. With access to the values of r0, r1 and r2 he can reliably
identify the correct guess by comparing his simulated RNG output to the actual
output. He now has completely determined the state of the RNG except for the
high entropy block spanning from s[59] to s[90] and the value of md0 before the
call to RAND add. He can thus now predict as many output bytes from the same
call as can be generated before again processing the high entropy state bytes,
which is a little less than one 1 kB. After that call, he loses information about
the new value of md0, according to the update md0 = SHA1(mdi||md0) at the
end of RAND bytes. This is the manifestation of ELO-80.

If the attacker has no access to output from the same call, we find the ELO-
160 issue, described in the following. After the high entropy reseed without the
stirring operation carried out, output bytes of the RNG while processing the
low entropy state bytes s[91] through s[1022] have an entropy of 160 + x bits.
However, if he sees enough output bytes from a single call to RAND bytes to
reliably determine the initial seed with entropy level x and thus the values of
all the state bytes s[91] through s[1022] as described above, then the entropy of
output produced with further calls to RAND bytes when processing these state
bytes is only 160 bits (stemming only from md0).

7 State Recovery Attacks in the RESEEDED State

We now investigate the possibility of another class of attacks against the re-
seeded state. We label these attacks after the deja-vu effect since they exploit
the “re-entering” of the state bytes where the high entropy seed was added by
exploiting the wraparound at the end of the state bytes in the RNG. In the fol-
lowing sections, we develop two different attacks in the same scenario: we assume
that in the falsely seeded state with zero entropy a high entropy bit string v
is fed to RNG. The first attack, DEJA-SEED, explained in Section 7.1, recovers
the seed v and the RNG state after the reseed. The second attack, subject of
Section 7.2, is named DEJA-STATE and only recovers the RNG state after the
feeding of v. Both attacks recover any secret random values generated after the
reseeding.

For the development of both attacks in the following sections, we assume an
initial seeding with an entropy of zero. Section 7.3 explains how the attacks can
be adjusted if that is not the case and how this affects their complexity.

7.1 Recovery of RNG State and Seed Data

The DEJA-SEED attack presumes the following scenario: The RNG is in the
state falsely seeded with zero entropy. Then, a 160-bit entropy seed v is fed
to the RNG using RAND add. Afterwards, a 160-bit key (for instance for HMAC)
is generated. To simplify the discussion, we use again fixed positions of the state
bytes. Let the 160-bit entropy seed data be fed to the RNG when p = 40. Assume
the added seed data v is of the following form: a publicly known 10-byte constant
part followed by the 20 byte seed data with full entropy. After the seed has been
added, p points to s[70]. Now the 160-bit key k is generated (from the analysis of
Section 6 it follows that it achieves the full 160-bit entropy level, provided that
no RNG output from the same call to RAND bytes is accessible to the attacker).
Afterwards, either through further additions of seed data or through output
generation, p reaches the value 0 again. In this situation, a 90 byte output is
generated with a single call to RAND bytes, which is accessible to the attacker.
The attacker uses this output to recover the seed v and subsequently the 160-bit
key k as follows.

s[0:19] s[20:39] s[40:59] s[60:69] s[70:89]

s[0:19] s[20:39] s′[40:59] s′[60:69] s′[70:89]

v0 v1

m
d
′0

m
d
′1

m
d
′2

RAND add

RAND bytes

r[0:19] r[20:39] r[40:59] r[60:69] r[70:89]

m
d
0

m
d
1

m
d
2

m
d
3

m
d
4

m
d
6

sim
#1

m[40:59]

guess v
(g)
0

?
=

sim
#2

guess v
(g)
1

m
d
7

m[60:69] m[70:89]

?
=

?
=

Fig. 3. Depiction of the DEJA-SEED attack.

Figure 3 depicts the attack. The state bytes shown at the top represent the
RNG’s state after the initial zero entropy seed and before the high entropy seed
with v. As indicated, the feeding of v alters the state bytes s[40 : 69]. The values
of md entering the respective computations are shown above the state bytes
as md′i, with md′0 being the value before the call to RAND add. Here, the state
bytes prior to the feeding are labelled as s′ where they differ from those of the
state s after the feeding of v and the key generation. In the lower half of the
figure, the execution of the call to RAND bytes is depicted that produces the
output the attacker uses for the attack. Below the state bytes s after the feeding
of v, the values of mdi belonging to the respective RNG state are shown. The
attacker uses r[0 : 39] to recover md1 with an effort of 280 simulations of output
generation: With the knowledge of r[0 : 9] he has to guess 280 possibilities of the
other half of md1. The identification of the correct guess is reliable since he can
use r[10 : 39] with a total size of 240 bits for the matching.

For the output generation of a single 20-byte block, a SHA-1 computation
with an input of 38 bytes has to be carried out. Since in the vast majority of
the guesses, already r[10 : 19] differs from the simulated output, the cost for the
generation of further simulated output values for the few cases where r[20 : 39]
has to be checked, can be ignored. Accordingly, the cost for this step is 280

computations of SHA-1 with a 38-byte input.

Note that the state block s[0 : 39] is still completely known to the attacker
and thus the 80-bit second half of md1 is the only value unknown to him that
serves as an input to the output generation of r[10 : 39]. The attacker knows the

value of mdi for as long as known state bytes are processed, i.e. until the start
of the processing of s[40]. From Algorithm 1, Steps 3 and 4, we find the relation

s[40 : 59] = s′[40 : 59]⊕ SHA1(md′0||s′[40 : 59]||v0) = f(v0), (2)

where md′0 is the value of md0 at the beginning of Algorithm 1 during the
feeding of v and s′[40 : 59] indicates the respective value of the variable prior
to the feeding of v and which is thus known to the attacker. The result of the
hash function on the right hand side amounts to md′1. Accordingly, we view
s[40 : 59] as a function f() of v0, the only unknown value for the attacker in
the update of s[40 : 59]. The seed bytes of v0, which flow into that computation,
contain 80 bits of entropy: their first half is the fixed 10 byte value, their second
half has full 80 bit entropy. The attacker recovers the value of v0 as follows: He

iterates through all the 280 possible values of v0. For each guessed value v
(g)
0 ,

he computes the resulting value of s[40 : 59] according to (2). This procedure is

indicated in Figure 3 as “sim#1”. For each guess of v
(g)
0 , this procedure outputs

a value m[40 : 59](g) where, according to Algorithm 2, Steps 2 and 3,

m[40 : 49](g) = md5[10 : 19] = SHA1
(

md4||r[40 : 49]init||f(v
(g)
0)[0 : 9]

)
[10 : 19],

m[50 : 59](g) is computed accordingly as

m[50 : 59](g) = md6[10 : 19] = SHA1
(

md5||r[50 : 59]init||f(v
(g)
0)[10 : 19]

)
[10 : 19],

and riniti indicates the initial contents of the output buffer, which in our model
does not contain any entropy. If the attacker finds m[40 : 59](g) = r[40 : 59], then

he concludes that v0 = v
(g)
0 and he has determined the first seed block.

Since here the output space (r[40 : 59] with 160 bits) used for the verification
has the double size of the input space (v0 with 80 bits), the chance for a collision

is overwhelmingly small and the attacker can determine v
(g)
0 with certainty.

After having recovered v0, he applies the same brute force recovery to v1.
This procedure is denoted as “sim#2” in the figure. The only difference to the

attack on v0 is that for each guess of v
(g)
1 , also the subsequent state bytes starting

from s[70] are determined. Using the 320 bits of r[60 : 69] and r[70 : 89] to match
the guess values m[60 : 69](g) and m[70 : 89](g), he can reliably verify his 80-bit
guess of v1. At this point, the attacker has completely recovered the state of the
RNG after the feeding of v and v itself. If no further entropy was added after
the feeding of v, he can predict any future output of the RNG. In any case he
recovers the key k directly generated after the feeding of v.

In this example, the attacker needs an effort of 3 · 280 ≈ 282 hash evaluations
(recovery of md with 56-byte hash input; of v0, and v1 each with 38-byte hash
inputs, and with an average effort of 280 hash evaluations for each of the three)
to recover a 160 bit seed. With less prepended constant data, and thus a greater
entropy in v0, the attack complexity increases accordingly.

7.2 Recovery of only the RNG State

In this section we present the DEJA-STATE attack, also applicable in the RNG
state reseeded. It is similar to the DEJA-SEED attack from Section 7.1, the
difference being that not the high entropy seed value is recovered, but only
the RNG state. Furthermore, there is no requirement on the seed data v to be
prepended with constant data, since here we attack the state bytes in blocks of
80 bits, as they are processed by RAND bytes, anyway. This attack allows the
prediction of all output of the RNG after the high entropy reseeding like in the
DEJA-SEED attack.

We assume that a 160-bit seed with full entropy was fed to the RNG through
a call to RAND add when p pointed to s[40]. Accordingly, the state bytes s[40 : 59]
are affected by this update. The attack starts in the same way as the DEJA-
SEED attack from Section 7.1, including the recovery of md1 through the first
output blocks, up to the point where in the DEJA-SEED attack the values for v0
and v1 would be guessed. From this point on, the DEJA-STATE attack proceeds
as follows.

s[0:19] s[20:39] s[40:49] s[50:59] s[60:69]

s[0:19] s[20:39] s′[40:49] s′[50:59] s′[60:69]

v

m
d
′0

m
d
′1

RAND add

RAND bytes

r[0:19] r[20:39] r[40:59] r[60:69] r[60:69]

m
d
0

m
d
1

m
d
2

m
d
3

m
d
4

m
d
5

sim
#1

m[40:49]

?
=

sim
#2

m
d
6

m[50:59] m[60:69]

?
=

?
=

Fig. 4. Depiction of the DEJA-STATE attack.

The state of the attack is that md4, the value entering the output generation
of r[40 : 49] based on s[40 : 49], is known. Figure 4 depicts this analogously to
the previous attack. Now the attacker performs the following steps:

1. He iterates through all the 280 possible values of s[40 : 49]. For each guess
s[40 : 49](g), he simulates the attacked RNG’s output generation, creating a

match value

m[40 : 49](g) = md5[10 : 19] = SHA1
(

md4||r[40 : 49]init||s[40 : 49](g)
)

[10 : 19].

Here we again assume all values rinit to be known. He determines the correct
guess as the one where m[40 : 49](g) = r[40 : 49]. This allows him to verify
his input space of 280 on an output space of 280, giving him an expectation
value for the number of collisions of one according to (1), since also a hash
function with truncated output can be viewed as a random mapping. In the
following, we proceed with the description of the attack as though there were
no collisions and take them into account when we calculate the complexity
of the attack. This procedure is indicated as “sim#1” in the figure.

2. He applies the same procedure to recover s[50 : 59], where he uses the up-
dated value of md that enters this iteration as md5, thus recovering the
value of md6. This procedure is indicated as “sim#2” in the figure, which
also includes the following two items.

3. Now he knows s[40 : 59] and also md6. Since he also knows s′[40 : 59], the
state before the feeding of v, he can calculate md′1, the value of md after the
processing of v during RAND add, as md′1 = s′[40 : 59]⊕ s[40 : 59], according
to Algorithm 1, Step 4.

4. He computes the final updated value of md at the end of RAND add, during
the feeding of v, as md′′0 = md′1 ⊕ md′0, according to Algorithm 1, Step 7.
Again, md′0 is known to him as a value from the state prior to the feeding of
v. With s[40 : 59] and the updated value md′′0 , he has recovered the complete
state after the reseeding with v. This allows him to identify the correct guess
for s[40 : 49] and s[50 : 59] with respect to the occurring collisions based on
further output from r[60] on.

We now estimate the average complexity of the attack: The attacker itera-
tively applies the single block recovery procedure of a complexity of 280 hash
evaluations to the initial recovery of md0 and to each of the two blocks r[40 : 49]
and r[50 : 59]. Since for each block he has on average one collision, on average
he has to process r[50 : 59] two times. This means he has to go through an effort
of 280 hash evaluations for four times on average, thus yielding an average effort
of 282 hash evaluations of the attack.

The cost estimation for this attack when two full 20-byte blocks with full en-
tropy are used in the seeding is achieved easily: there is on average an additional
effort in terms of hash evaluations of 4 ·280 for the third and 8 ·280 for the fourth
10-byte block, yielding a total average effort of 16 · 280 = 284 hash evaluations.

In our attack, we chose a length of a single 20 byte blocks on purpose to
simplify the description. Now we consider the case of seed data the length of
which is not a multiple of 20-byte blocks. If the seed, for instance, has a length
between 31 and 39 bytes, the second block is shorter than 20 bytes. Then, ac-
cording to Algorithm 1, in Step 4 only a part of md′2 is XORed to s[70 : 79]. This
means that the attacker can recover only a part of md′2. Assuming for instance a
seed length of 32 bytes, 64 bits of md′2 are not recoverable from the state bytes.

Accordingly, they have to be recovered through brute force effort, using further
output blocks for the matching. Obviously, if the final block vl becomes shorter
than 80 bits, it is more efficient to iterate through the possible values of vl than
to guess the lost part of md′2. From these considerations we see that all possible
seed value lengths of maximally 40 bytes can be attacked with an extra average
effort 283, where we also account for the 8 expected collisions when processing
r[70 : 79].

Like in the DEJA-SEED attack from Section 7.1, the attacker recovers com-
pletely the state of the RNG after the feeding of v. Thus he can predict all RNG
output from that point on without any further effort.

7.3 Dealing with Non-Zero Initial Entropy

In Sections 7.1 and 7.2 we have assumed an initial entropy of zero for the RNG
state before the reseed. Given that the seed used for the initial seeding of the
RNG had a low but non-zero entropy of x bits, two approaches can be considered
dealing with this entropy in the DEJA-SEED and DEJA-STATE attacks.

If the attacker has access to RNG output before the reseeding, he can recover
the initial state with an effort of 2x hash evaluations. This effort will be negligible
compared to that of the presented attacks for actual low entropy states. If the
attacker has no access to output prior to the reseeding, he has to recover the
initial state parallel to the recovery of md1 using the first output blocks. This
means that additionally to the 280 input space of the unknown half of md1, he
has also to iterate over the 2x input space for the initial entropy (each guess for
the initial seed implies a guess for the whole state s), yielding a total effort of
280+x hash evaluations. Thus, depending on the initial entropy level, this can
become the dominating cost for DEJA-SEED and DEJA-STATE attacks.

8 Conclusion

In this section we discuss the impact, the possibilities for removing of the dis-
covered issues and summarize the theoretical conclusions of our findings.

8.1 Theoretical Aspects of our Findings

Our central result is that under worst conditions, OpenSSL’s RNG only achieves
a security level of 80 bits. This sounds devastating, but when we discuss the
impact of our results, we will find that from a realistic perspective the majority
of real-world systems will be affected to a lesser extend, if at all.

The common notions of security applied to RNGs [18,4] are the well estab-
lished forward and backward security, i.e. the security of an RNG under the
assumption of the disclosure of its state at a point forward or backward in time,
respectively; as well as the notion of resilience. The latter would be violated if
an attacker can reduce the entropy of the RNG’s output by feeding specially
prepared seed data to the RNG.

From these notions, backward security is not even attempted by the RNG
itself, but when it is attempted by the client application, then it suffers from
the DEJA-SEED and DEJA-STATE attacks that allow the disclosure of the
RNG state based on the generated output after a reseeding. Accordingly, the
backward security of the RNG is impaired. The RNG’s forward security in the
state reseeded is affected by the same attacks since they allow the recovery of
previous output – which certainly is also possible with access to the RNG state
instead of its output.

Our findings do not suggest that the RNG’s resilience is defective in any
way. As it seems, the transformations leading to updated RNG states during the
addition of seed data are sound in this respect.

Moreover, we find that the addition of seed data to the RNG is not optimal
in the sense that if the RNG is in a low entropy state, then the added seed data
remains recoverable from the RNG state with a much lower complexity than that
corresponding to their combined entropy. Since, to our knowledge, the security
of the seed data in the RNG state is not covered by any of the existing notions,
we propose the forward security of seed data as a new security notion for RNGs.

We also had to point out a shortcoming in the existing notion of a mixing
function: using the entropy of the RNG state in its definition, its application
leads to meaningless results if the RNG does not use its complete RNG state in
a symmetric way for the output production. Accordingly, we propose the notion
of an effective mixing function, wherein the role of the RNG state is replaced by
the subsequent output of the RNG.

What remains from our findings is the low entropy secret leakage issues
(LESLI). It is a rather trivial requirement for an RNG not to produce out-
put before sufficiently seeded, however, to our knowledge, this has so far only
been viewed from the angle of the low-entropy-recovery problem, which imposes
different restrictions than the prevention of seed data leakage. Accordingly, also
this problem seems to require formal treatment in RNG security models.

8.2 Impact

Estimating the impact of our findings, we conclude that, excluding the possibility
of system break-ins revealing the RNG state to an attacker for the time being,
any application running on a system that features a sufficiently high boot time
entropy and automatic seeding of the OpenSSL RNG will be safe, since then the
initial seed will be of high entropy. The same applies to systems that perform the
high entropy reseeding before ever having generated any random numbers. Thus,
the only issue such systems suffer from will be ELO-240, meaning that the RNG
will produce about 1KB of 240-bit entropy output before it runs at full 256-bit
security. Though a clear error in the cryptographic design, this vulnerability can
be seen as purely cosmetic problem of the RNG, as generally no system building
on ordinary software implementations will be able to achieve the corresponding
security level with respect to other aspects such as a general assured security
features and physically secure key storage.

However, for any system where the potentially automatic seeding from the
operating system RNG delivers a low entropy level, or where this feature is
absent, and the client application for instance relies on the loading of a seed-
file, the issues ELO-80, ELO-160, DEJA-SEED and DEJA-STATE come up as
a threat. The first two are a comparatively minor threat, since ELO-80 depends
on the attacker receiving some bytes from the same call to RAND bytes as the
one he wishes to predict output from, which is presumably not possible in most
designs. And ELO-160 at least maintains a reasonable security level of 160 bits
which will most likely remain impossible to break even for “nation-strength”
adversaries in the long term. However, especially DEJA-STATE is applicable in
general scenarios and has such a small complexity that it forms a concrete threat,
since an entropy level of around 80 bits is generally assumed to provide only
short term security. So-called “lightweight” cryptographic algorithms such as
PRESENT [17] provide 80 bit security. Even though today such a computational
effort must be assumed to still be impossible to realize, this can quickly change in
the near future. Since all the attacks presented in this work are entirely passive
procedures, the RNG output values can be recorded and the computational part
of the attack be carried out once the necessary computational resources become
available to the attacker. From this perspective, the OpenSSL RNG must be
considered as broken in the reseeded state, i.e. a scenario where the stirring
operation is ceased due to a falsely believed high entropy level. In order to
assess the security of an application on a potentially vulnerable system, one must
assure that before the high entropy seeding, no other low entropy seeding with
subsequent output generation was performed. This is an undesirable situation,
since such an analysis is inherently non-local, making it a complex and error
prone task.

Good news is that RSA key generation remains safe if it is performed directly
after the reseeding, i.e. without any other output generation in between. First
of all, there are no RSA keys in use with a security level of 256 bits (this would
correspond to a modulus of 15360 bits), so that ELO-240 has no effect, but much
more importantly, in an RSA key generation so much output is drawn from the
RNG that none of the issues apply any more after such an operation. This is due
to the fact that also the RNG’s output generation has a “stirring” effect on the
state. However, this helpful effect of RSA key generation certainly only applies
if it is performed before the generation of any other random output.

LESLI remains an issue for any system that temporarily operates in the un-
seeded or falsely seeded state. Here, the leakage of intentionally overwritten
or uninitialized/reused memory is a potential threat that could affect real world
systems. But the number of actually exploitable applications must be deemed
to be small, since in general the use of the library with the RNG being in a low
entropy state will be unintentional and is thus likely to incur greater problems
than low entropy secret leakage.

The main category of systems potentially affected by the any of the issues
identified in this work must be assumed to be embedded systems and mobile
platforms. As it is well known, such platforms often feature insufficient entropy

levels of their operating system RNGs at least at boot time, without this being
detectable by the RNG implementation. Accordingly, the use of a seed file, which
stores entropy for applications across application restarts or system reboots, is
a common mitigating measure under these circumstances. As we have learned,
this approach is at risk to be affected by the issues reported in this work.

8.3 Repair of OpenSSL’s RNG

From our analysis of the individual issues it becomes clear what the two main
problems of OpenSSL’s RNG are: the cessation the stirring operation after hav-
ing entered the seeded state, and subversion of its remaining backbone, the
running md, by leaking 80 bits of it through the output. We want to point out
that this problem must have been clear to some extent to the designer, since a
source code comment in md rand.c just above the code implementing the stirring
operation states:

/*
* In the output function only half of ’md’ remains secret, so we
* better make sure that the required entropy gets ’evenly
* distributed’ through ’state’, our randomness pool. The input
* function (ssleay_rand_add) chains all of ’md’, which makes it more
* suitable for this purpose.
*/

However, it seems that neither the exact nature of the entropy distribution
through the stirring operation nor the necessity of being able to recover from a
compromised state at any point during the RNG’s life cycle was seen. In any
case, if the RNG was intentionally designed to be only one-time seedable, then
at least this would have to be stated in the documentation.

The straightforward repair is given by two measures. First, make the updated
md in RAND bytes dependent (through hashing or XOR) on the previous value
of md after the generation of each block, as it is the case when the vulnerable
implementation is used only with calls generating 10 bytes or less of output.
Second, the stirring operation must be carried out after each call to RAND add

before the generation of new output.

This brings us to a further point, already discussed in the previous section,
namely the forward security of the RNG with respect to the recovery of poten-
tially low entropy seed data fed to it. With the current approach of executing the
stirring function from RAND bytes, even in the case of correct entropy estimation
during the initial seeding, the seed values would remain recoverable through an
attack in the style of DEJA-SEED directly on the state bytes s in the period
between their feeding through RAND add and the next call to RAND bytes. The
correct approach would be to implement RAND add in such a way that a brute
force attack on the state s would have the same complexity as the total entropy
of all the data fed to it so far.

Concerning LESLI, the only solution is to let RAND pseudo bytes generate
output using a different RNG state than that used for RAND bytes. This would
also remove another subtle issue concerning the security with respect to process

forking and the RNG’s entropy calculation, which is reported in a source code
comment of md rand.c itself.

The above described measures will remove all vulnerabilities discovered in
this work. However, with respect to efficiency aspects, a standard construction
for instance using a CTR mode generator would be much more favourable than a
repair of the current design. An AES-based RNG will generally be able to achieve
a higher efficiency due to the wide-spread hardware support for this cipher,
whereas hardware support of hash functions is very rare. As it becomes evident
from our results, the employment of such a large state as used by the OpenSSL
RNG does not have any positive effects on security. It remains completely unclear
what was the goal of this design choice. A substantial reduction of its size could
also help to increase the RNG’s performance.

8.4 Countermeasures in Client Code

In order for users of vulnerable versions of OpenSSL to be able to use the RNG
without being affected by the issues ELO-240, ELO-80, ELO-160, DEJA-SEED,
and DEJA-STATE, in Appendix A, we provide secure wrapper functions for
OpenSSL’s RNG functionality. The LESLI issue is based on a fundamental design
problem that cannot be repaired by wrapper functions. Accordingly, we advise
not to use the function RAND pseudo bytes at all. All calls to that function
should be replaced by calls to RAND bytes instead. Note that it is important to
check the return value of RAND bytes: if this function fails due to an insufficiently
seeded RNG, although returning an error value, it still outputs random bytes.
Our secure version of RAND bytes retains this behaviour. Failing to check the
error value means, among other problems, that the LESLI issue remains even
when abstaining from using RAND pseudo bytes.

Calls to RAND add shall be replaced with RAND add secure 240bits or RAND -

add secure 256bits. Which of the respective version, “240bits” or “256bits”
shall be used depends on whether the user deems it sufficient to have 240 bit en-
tropy output or needs the full 256 bit security. These functions are implemented
as follows: after adding the seed through RAND add, the 240 bit version executes
a single stirring operation, the 256 bit version repeats this operation once more.
The secure functions to replace RAND seed, RAND poll and RAND load file fol-
low the same principle and naming convention.

Calls to RAND bytes shall be replaced with RAND bytes secure. This function
sets the target buffer to all zeroes before calling RAND bytes, thus avoiding the
leakage of its previous contents in future RNG output under all conditions.
If this behaviour is not desired, the function can be modified correspondingly.
Furthermore, the function makes calls to RAND bytes block-wise with a block
length of maximally 10 bytes. This avoids the issues that rely on the learning of
half of md through the RNG output, which are ELO-240, ELO-80, DEJA-SEED,
and DEJA-STATE.

For users which cannot dispense with RAND pseudo bytes, we also provide
the function RAND pseudo bytes secure, which at least prevents leakage of the
previous contents of the target buffer.

References

1. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the Linux Random Number
Generator. In: Proceedings of the 2006 IEEE Symposium on Security and Privacy.
SP ’06, Washington, DC, USA, IEEE Computer Society (2006) 371–385

2. P. Lacharme, A. Röck, V. Strubel, M. Videau: The Linux Pseudorandom Number
Generator Revisited (2012) http://eprint.iacr.org/2012/251.pdf.

3. Kaplan, D., Kedmi, S., Hay, R., Dayan, A.: Attacking the Linux PRNG on An-
droid: Weaknesses in Seeding of Entropic Pools and Low Boot-time Entropy. In:
Proceedings of the 8th USENIX Conference on Offensive Technologies. WOOT’14,
Berkeley, CA, USA, USENIX Association (2014) 14–14

4. Dodis, Y., Pointcheval, D., Ruhault, S., Vergniaud, D., Wichs, D.: Security Analysis
of Pseudo-random Number Generators with Input: /Dev/Random is Not Robust.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communi-
cations Security. CCS ’13, New York, NY, USA, ACM (2013) 647–658

5. Kim, S.H., Han, D., Lee, D.H.: Predictability of Android OpenSSL’s Pseudo Ran-
dom Number Generator. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer – Communications Security. CCS ’13, New York, NY, USA, ACM
(2013) 659–668

6. The OpenSSL Library: www.openssl.org.
7. The Android operating system: https://www.android.com/.
8. Dodis, Y., Shamir, A., Stephens-Davidowitz, N., Wichs, D.: How to Eat Your

Entropy and Have It Too - Optimal Recovery Strategies for Compromised RNGs.
In Garay, J., Gennaro, R., eds.: Advances in Cryptology - CRYPTO 2014. Volume
8617 of Lecture Notes in Computer Science., Springer Berlin Heidelberg (2014)
37–54

9. OpenSSL: Manual page of RAND https://www.openssl.org/docs/crypto/RAND.

html .
10. OpenSSL: Manual page of RAND add() https://www.openssl.org/docs/

crypto/RAND_add.html .
11. Viega, J.: Practical Random Number Generation in Software. In: Proceedings of

the 19th Annual Computer Security Applications Conference. ACSAC ’03, Wash-
ington, DC, USA, IEEE Computer Society (2003)

12. Ferguson, N., Schneier, B., Kohno, T.: Cryptography Engineering. John Wiley &
Sons, Inc. (2010)

13. Software Engineering Institute: https://buildsecurityin.us-cert.gov/

bsi-rules/home/g1/771-BSI.html.
14. Xi Wang: More randomness or less (2012) http://kqueue.org/blog/2012/06/25/

more-randomness-or-less/.
15. Falko Strenzke: uninitialized RAM and random number generation: threats

from compiler optimizations (2015) http://cryptosource.de/posts/uninit_

data_rng_en.html.
16. Michael Brooks: stackoverflow: How does Linux determine

the next PID? http://stackoverflow.com/questions/3446727/

how-does-linux-determine-the-next-pid.
17. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,

M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: THE PROCEEDINGS OF CHES 2007, Springer (2007)

18. Barak, B., Halevi, S.: A Model and Architecture for Pseudo-random Generation
with Applications to /dev/random. In: Proceedings of the 12th ACM Conference
on Computer and Communications Security. CCS ’05, ACM (2005) 203–212

http://eprint.iacr.org/2012/251.pdf
www.openssl.org
https://www.android.com/
https://www.openssl.org/docs/crypto/RAND.html
https://www.openssl.org/docs/crypto/RAND.html
https://www.openssl.org/docs/crypto/RAND_add.html
https://www.openssl.org/docs/crypto/RAND_add.html
https://buildsecurityin.us-cert.gov/bsi-rules/home/g1/771-BSI.html
https://buildsecurityin.us-cert.gov/bsi-rules/home/g1/771-BSI.html
http://kqueue.org/blog/2012/06/25/more-randomness-or-less/
http://kqueue.org/blog/2012/06/25/more-randomness-or-less/
http://cryptosource.de/posts/uninit_data_rng_en.html
http://cryptosource.de/posts/uninit_data_rng_en.html
http://stackoverflow.com/questions/3446727/how-does-linux-determine-the-next-pid
http://stackoverflow.com/questions/3446727/how-does-linux-determine-the-next-pid

A Secure Wrapper Functions for the OpenSSL RNG

In this section we give secure wrapper functions for the OpenSSL RNG func-
tionality. Please refer to Section 8.4 for an explanation of the countermeasures
used in these functions.

void RAND_add_secure_240bits(const void* buf , int num, double entropy)
{
int n = 1023;
const unsigned char dummy_seed[20] = { 0 };
if(buf)
{
RAND_add(buf, num, entropy);

}
while (n > 0)
{
RAND_add(dummy_seed, sizeof(dummy_seed), 0.0);
n -= sizeof(dummy_seed);

}
}

void RAND_add_secure_256bits(const void* buf , int num, double entropy)
{
RAND_add_secure_240bits(buf, num, entropy);
RAND_add_secure_240bits(NULL, 0, 0.0);

}

void RAND_seed_secure_240bits(const void *buf, int num)
{
RAND_add_secure_240bits(buf, num, (double)num);

}

void RAND_seed_secure_256bits(const void *buf, int num)
{
RAND_add_secure_256bits(buf, num, (double)num);

}

int RAND_poll_secure_240bits()
{
int result = RAND_poll();
RAND_add_secure_240bits(NULL, 0, 0.0);
return result;

}

int RAND_poll_secure_256bits()
{
int result = RAND_poll();
RAND_add_secure_256bits(NULL, 0, 0.0);
return result;

}

int RAND_load_file_secure_240bits(const char *file, long max_bytes)
{
int ret = RAND_load_file(file, max_bytes);
RAND_add_secure_240bits(NULL, 0, 0.0);
return ret;
}

int RAND_load_file_secure_256bits(const char *file, long max_bytes)
{
int ret = RAND_load_file(file, max_bytes);
RAND_add_secure_256bits(NULL, 0, 0.0);
return ret;
}

int RAND_bytes_secure(unsigned char *buf, int num)
{
memset(buf, 0, num);
int final_ret = 1;
while(num)
{
int ret;
int this_round = num > 10 ? 10 : num;
ret = RAND_bytes(buf, this_round);
if(ret != 1)
{
final_ret = ret;

}
buf += this_round;
num -= this_round;

}
return final_ret;

}

int RAND_pseudo_bytes_secure(unsigned char *buf, int num)
{
memset(buf, 0, num);
return RAND_pseudo_bytes(buf, num);

}

	 An Analysis of OpenSSL's Random Number Generator
	Falko Strenzke

