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Pseudo Random Number Generation

Software-based RNG’s use pseudo random number generators
(PRNGs)

but are not PRNGs
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Random Number Generation in Cryptographic Libraries

OS RNG

entropy sourceentropy source entropy source

OpenSSL RNG

seed

application

random numbers

t

seed
(file)
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Security Notions for RNGs

forward security
t

output state compromise
recover

backward security
t

outputstate compromise
recover

don’t leak any information about state in output

An Analysis of OpenSSL’s RNG Falko Strenzke 4 / 34



Security Notions for RNGs

forward security
t

output state compromise
recover

backward security
t

outputstate compromise
recover

don’t leak any information about state in output

An Analysis of OpenSSL’s RNG Falko Strenzke 4 / 34



Security Notions for RNGs

forward security
t

output state compromise
recover

backward security
t

outputstate compromise
recover

don’t leak any information about state in output

An Analysis of OpenSSL’s RNG Falko Strenzke 4 / 34



Low Entropy Secret Leakage
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Seeding by the Application

OpenSSL RNG

application

RAND add()
RAND bytes()

RAND pseudo bytes()

RAND bytes()

RAND pseudo bytes()

t

H < 256 bit H ≥ 256 bit
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Outputting Random Numbers in Low Entropy States

OpenSSL RNG

H = 10 bits H = 25 bits

application

attacker

secret seed
H = 15 bits

brute force 225 guesses
recover secret seed
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RNG output, nonce
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Potentially Leaked Secrets

RAND pseudo bytes generates output in the same way as
RAND bytes

API documentation suggests to feed low-entropy secrets such
passwords

OpenSSL feeds the previous contents of buffers to be
randomized to RNG state (Debian issue in 2008)

previous contents could contain low entropy secrets by
themselves

overwriting secrets with random numbers is an established
practice

overwritten low entropy secrets may be leaked in output
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Core Cryptographic Function of OpenSSL’s
RNG
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Core Cryptographic Function of OpenSSL’s RNG

custom design

c©1998
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Core Cryptographic Function of OpenSSL’s RNG
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Output Entropy Limitation Vulnerabilities
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Attacks so far

ELO-240: purely cosmetic

ELO-160: not exploitable

ELO-80: only predict output from same call to RAND bytes

can we do better? ≈ 280 and more realistic conditions?
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State Recovery Attacks
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Dealing with Non-Zero Initial Entropy

Strategies to deal with non-zero initial entropy

determine state prior to seeding from output

determine additional entropy during the recovery of md

computational effort 280+x
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State Recovery Attack: DEJA-STATE

state after reseeding completely recovered

condition: attacker receives longer portion of output at
specific offset after reseeding

effort for a 320-bit seed: 284 hash evaluations

(some tens of bytes in each hash invocation)

also possible for seed not a multiple of 80 bits

280 considered “light-weight security”

≈ RSA-1024
PRESENT light-weight block cipher for RFID applications
must be feared to be breakable within a decade (?)
will incur considerable costs for a long time
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State Recovery Attack: DEJA-SEED

similar attack, recover also the seed

m
d
′′0

s0 s1

b0, 160 bits b1, 80 bits

const/
known

80 bits
entropy

SHA1 SHA1

m
d
′0

synching to md like in DEJA-STATE

then iterate through the possible seed values

An Analysis of OpenSSL’s RNG Falko Strenzke 25 / 34



State Recovery Attack: DEJA-SEED

similar attack, recover also the seed

m
d
′′0

s0 s1

b0, 160 bits b1, 80 bits

const/
known

80 bits
entropy

SHA1 SHA1

m
d
′0

synching to md like in DEJA-STATE

then iterate through the possible seed values

An Analysis of OpenSSL’s RNG Falko Strenzke 25 / 34



State Recovery Attack: DEJA-SEED

similar attack, recover also the seed

m
d
′′0

s0 s1

b0, 160 bits b1, 80 bits

const/
known

80 bits
entropy

SHA1 SHA1

m
d
′0

synching to md like in DEJA-STATE

then iterate through the possible seed values

An Analysis of OpenSSL’s RNG Falko Strenzke 25 / 34
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Forward Security of Seed Data

forward security of seed data not a recognized notion

OpenSSL’s RNG: even high entropy seed data potentially
recoverable

block-wise hashing in RAND add is a mistake

correct: hashing state together with new input

always inefficient for large RNG states
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Theoretical Considerations
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Notion of Mixing Function

H(f (I ,S)) ≥ H(S) and H(f (I , S) ≥ H(I )

input I , state S

RAND add fulfills this notion formally

but not effectively

only useful if whole state is used in output production in a
symmetric way

need definition which considers entropy of subsequent
output instead of that of the state
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Formal Vulnerabilities of OpenSSL’s RNG

impaired forward security

t

reseeding output
DEJA-SEED, DEJA-STATE,

or state compromise
recover

backward security not attempted by RNG itself

but when attempted by application, suffers from our attacks

t

state compromise reseeding output DEJA-SEED, DEJA-STATE
recover

new notion: forward security of seed data

not achieved by OpenSSL’s RNG
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Repairing OpenSSL’s RNG
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Repairing the RNG

RAND pseudo bytes must use different state (LESLI)

use cipher-based generator
approved and efficients designs exist

e.g. AES / counter mode generators
as realized in the FIPS version of the library!

more efficient than hash-based, due to hardware support

ad-hoc repair

increase the “entropy flow” beyond 160 bits
remove the leakage of half of md
forward security of seed-data cannot be efficiently addressed

so far no repair in OpenSSL

secure wrapper functions (→ paper)

Note: the forks LibreSSL and BoringSSL are even worse
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Conclusion

multiple design errors in OpenSSL’s RNG

LESLI
ELO240,ELO160,ELO80
DEJA-STATE, DEJA-SEED

effort around 280 hash evaluations

impact
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Thank you!

An Analysis of OpenSSL’s RNG Falko Strenzke 34 / 34


	Low Entropy Secret Leakage
	Core Cryptographic Function of OpenSSL's RNG
	Output Entropy Limitation Vulnerabilities
	State Recovery Attacks
	Forward Security of Seed Data
	Theoretical Considerations
	Repairing OpenSSL's RNG

