
Message-aimed Side Channel and Fault Attacks
against Public Key Cryptosystems with

homomorphic Properties

Falko Strenzke

FlexSecure GmbH, Germany,
strenzke@flexsecure.de

November 27, 2011

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 1 / 27

strenzke@flexsecure.de

Introduction

We will take a look at a certain type of side channel attack
against public key cryptosystems (PKC)

which require

the PKC to have a homomorphic property:
E(a) • E(b) = E(a� b)
the implementation to reveal a certain property of the plaintext

which aim at recovering the message to certain ciphertext

are conducted as (adaptively) chosen-ciphertext attacks

We will consider the RSA and McEliece cyptosystems

learn about new resp. recent results
compare the results for both PKCs

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 2 / 27

Introduction

We will take a look at a certain type of side channel attack
against public key cryptosystems (PKC)

which require

the PKC to have a homomorphic property:
E(a) • E(b) = E(a� b)
the implementation to reveal a certain property of the plaintext

which aim at recovering the message to certain ciphertext

are conducted as (adaptively) chosen-ciphertext attacks

We will consider the RSA and McEliece cyptosystems

learn about new resp. recent results
compare the results for both PKCs

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 2 / 27

Introduction

We will take a look at a certain type of side channel attack
against public key cryptosystems (PKC)

which require

the PKC to have a homomorphic property:
E(a) • E(b) = E(a� b)
the implementation to reveal a certain property of the plaintext

which aim at recovering the message to certain ciphertext

are conducted as (adaptively) chosen-ciphertext attacks

We will consider the RSA and McEliece cyptosystems

learn about new resp. recent results
compare the results for both PKCs

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 2 / 27

Introduction

We will take a look at a certain type of side channel attack
against public key cryptosystems (PKC)

which require

the PKC to have a homomorphic property:
E(a) • E(b) = E(a� b)
the implementation to reveal a certain property of the plaintext

which aim at recovering the message to certain ciphertext

are conducted as (adaptively) chosen-ciphertext attacks

We will consider the RSA and McEliece cyptosystems

learn about new resp. recent results
compare the results for both PKCs

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 2 / 27

Introduction

We will take a look at a certain type of side channel attack
against public key cryptosystems (PKC)

which require

the PKC to have a homomorphic property:
E(a) • E(b) = E(a� b)
the implementation to reveal a certain property of the plaintext

which aim at recovering the message to certain ciphertext

are conducted as (adaptively) chosen-ciphertext attacks

We will consider the RSA and McEliece cyptosystems

learn about new resp. recent results
compare the results for both PKCs

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 2 / 27

Introduction

We will take a look at a certain type of side channel attack
against public key cryptosystems (PKC)

which require

the PKC to have a homomorphic property:
E(a) • E(b) = E(a� b)
the implementation to reveal a certain property of the plaintext

which aim at recovering the message to certain ciphertext

are conducted as (adaptively) chosen-ciphertext attacks

We will consider the RSA and McEliece cyptosystems

learn about new resp. recent results
compare the results for both PKCs

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 2 / 27

Introduction

We will take a look at a certain type of side channel attack
against public key cryptosystems (PKC)

which require

the PKC to have a homomorphic property:
E(a) • E(b) = E(a� b)
the implementation to reveal a certain property of the plaintext

which aim at recovering the message to certain ciphertext

are conducted as (adaptively) chosen-ciphertext attacks

We will consider the RSA and McEliece cyptosystems

learn about new resp. recent results
compare the results for both PKCs

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 2 / 27

Introduction

We will take a look at a certain type of side channel attack
against public key cryptosystems (PKC)

which require

the PKC to have a homomorphic property:
E(a) • E(b) = E(a� b)
the implementation to reveal a certain property of the plaintext

which aim at recovering the message to certain ciphertext

are conducted as (adaptively) chosen-ciphertext attacks

We will consider the RSA and McEliece cyptosystems

learn about new resp. recent results
compare the results for both PKCs

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 2 / 27

Introduction

We will take a look at a certain type of side channel attack
against public key cryptosystems (PKC)

which require

the PKC to have a homomorphic property:
E(a) • E(b) = E(a� b)
the implementation to reveal a certain property of the plaintext

which aim at recovering the message to certain ciphertext

are conducted as (adaptively) chosen-ciphertext attacks

We will consider the RSA and McEliece cyptosystems

learn about new resp. recent results
compare the results for both PKCs

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 2 / 27

1 Introduction

2 Decryption Oracle Attacks against the RSA Cryptosystem

3 Decryption Oracle Attacks against the McEliece Cryptosystem

4 Comparison Between the Attacks against McEliece and RSA

5 Countermeasures

6 Conclusion

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 3 / 27

1 Introduction

2 Decryption Oracle Attacks against the RSA Cryptosystem

3 Decryption Oracle Attacks against the McEliece Cryptosystem

4 Comparison Between the Attacks against McEliece and RSA

5 Countermeasures

6 Conclusion

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 4 / 27

Manger’s Attack

RSA-OAEP Encoding introduced to thwart Bleichenbacher’s
Attack against RSA with PKCS#1 v1.5 Encoding

The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks

(any manipulation of an original ciphertext is detected during
the decryption)

CRYPTO 2001: James Manger introduces a Fault/Timing
Attack against straightforward implementations of RSA-OAEP

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 5 / 27

Manger’s Attack

RSA-OAEP Encoding introduced to thwart Bleichenbacher’s
Attack against RSA with PKCS#1 v1.5 Encoding

The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks

(any manipulation of an original ciphertext is detected during
the decryption)

CRYPTO 2001: James Manger introduces a Fault/Timing
Attack against straightforward implementations of RSA-OAEP

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 5 / 27

Manger’s Attack

RSA-OAEP Encoding introduced to thwart Bleichenbacher’s
Attack against RSA with PKCS#1 v1.5 Encoding

The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks

(any manipulation of an original ciphertext is detected during
the decryption)

CRYPTO 2001: James Manger introduces a Fault/Timing
Attack against straightforward implementations of RSA-OAEP

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 5 / 27

Manger’s Attack

RSA-OAEP Encoding introduced to thwart Bleichenbacher’s
Attack against RSA with PKCS#1 v1.5 Encoding

The OAEP is a so called CCA2 conversion that secures a
cryptosystem against adaptive chosen ciphertext attacks

(any manipulation of an original ciphertext is detected during
the decryption)

CRYPTO 2001: James Manger introduces a Fault/Timing
Attack against straightforward implementations of RSA-OAEP

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 5 / 27

RSA

public key: public exponent e and public modulus n

private key: private exponent d with xed = x mod n

encryption: z = me mod n

decryption: m = zd = med mod n

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 6 / 27

RSA

public key: public exponent e and public modulus n

private key: private exponent d with xed = x mod n

encryption: z = me mod n

decryption: m = zd = med mod n

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 6 / 27

RSA

public key: public exponent e and public modulus n

private key: private exponent d with xed = x mod n

encryption: z = me mod n

decryption: m = zd = med mod n

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 6 / 27

RSA

public key: public exponent e and public modulus n

private key: private exponent d with xed = x mod n

encryption: z = me mod n

decryption: m = zd = med mod n

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 6 / 27

OAEP Encoding

Figure: The RSA-OAEP decoding procedure. Here,
⊕

denotes XOR.

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 7 / 27

Manger’s Attack - the observable Error Condition

OAEP Decoding checks that Y = 0

(Y 6= 0 → “supernumerary octet”)

Y 6= 0 can be learned either through

a specific error message
shorter time to the error message compared to later OAEP
errors

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 8 / 27

Manger’s Attack - the observable Error Condition

OAEP Decoding checks that Y = 0

(Y 6= 0 → “supernumerary octet”)

Y 6= 0 can be learned either through

a specific error message
shorter time to the error message compared to later OAEP
errors

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 8 / 27

Manger’s Attack - the observable Error Condition

OAEP Decoding checks that Y = 0

(Y 6= 0 → “supernumerary octet”)

Y 6= 0 can be learned either through

a specific error message
shorter time to the error message compared to later OAEP
errors

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 8 / 27

Manger’s Attack - the observable Error Condition

OAEP Decoding checks that Y = 0

(Y 6= 0 → “supernumerary octet”)

Y 6= 0 can be learned either through

a specific error message
shorter time to the error message compared to later OAEP
errors

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 8 / 27

Manger’s Attack - the observable Error Condition

OAEP Decoding checks that Y = 0

(Y 6= 0 → “supernumerary octet”)

Y 6= 0 can be learned either through

a specific error message
shorter time to the error message compared to later OAEP
errors

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 8 / 27

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 9 / 27

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 9 / 27

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 9 / 27

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 9 / 27

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 9 / 27

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 9 / 27

Manger’s Attack - the Information Gain

The attacker wants to decrypt the ciphertext c0 = me
0 mod n

He chooses f ∈ {0, 1, . . . , n − 1}
He creates ciphertexts cf = f ec0 = (fm0)e mod n

He observes the decryption of cf

If Y 6= 0 he learns fm0 mod n ≥ B

Manger gives a specific strategy how to choose f initially

and how to adapt f in in subsequent queries

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 9 / 27

Recent Work: a potential Vulnerability in the Integer to
Octet String Conversion

void BigInt::binary encode(byte output[]) const
{

const u32bit sig bytes = bytes();
for(u32bit j = 0; j != sig bytes; ++j)

output[sig bytes-j-1] = byte at(j);

}
the running time of this routine obviously depends on the
number of octets of the encoded integer

→ potential timing or power vulnerability!

independent of encoding method

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 10 / 27

Recent Work: a potential Vulnerability in the Integer to
Octet String Conversion

void BigInt::binary encode(byte output[]) const
{

const u32bit sig bytes = bytes();
for(u32bit j = 0; j != sig bytes; ++j)

output[sig bytes-j-1] = byte at(j);

}
the running time of this routine obviously depends on the
number of octets of the encoded integer

→ potential timing or power vulnerability!

independent of encoding method

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 10 / 27

Recent Work: a potential Vulnerability in the Integer to
Octet String Conversion

void BigInt::binary encode(byte output[]) const
{

const u32bit sig bytes = bytes();
for(u32bit j = 0; j != sig bytes; ++j)

output[sig bytes-j-1] = byte at(j);

}
the running time of this routine obviously depends on the
number of octets of the encoded integer

→ potential timing or power vulnerability!

independent of encoding method

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 10 / 27

Potential Vulnerabilities in the Multiprecision Integer
Routines

it was also shown that in special cases there are potential
vulnerabilities already in the last multiprecision integer (MPI)
routine dealing with the message representative

based on

counting leading zero words in the MPI routines
and copying of the significant words in memory

→ on 8-bit architectures: running time depends on the
number of octets of m

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 11 / 27

Potential Vulnerabilities in the Multiprecision Integer
Routines

it was also shown that in special cases there are potential
vulnerabilities already in the last multiprecision integer (MPI)
routine dealing with the message representative

based on

counting leading zero words in the MPI routines
and copying of the significant words in memory

→ on 8-bit architectures: running time depends on the
number of octets of m

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 11 / 27

Potential Vulnerabilities in the Multiprecision Integer
Routines

it was also shown that in special cases there are potential
vulnerabilities already in the last multiprecision integer (MPI)
routine dealing with the message representative

based on

counting leading zero words in the MPI routines
and copying of the significant words in memory

→ on 8-bit architectures: running time depends on the
number of octets of m

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 11 / 27

Potential Vulnerabilities in the Multiprecision Integer
Routines

it was also shown that in special cases there are potential
vulnerabilities already in the last multiprecision integer (MPI)
routine dealing with the message representative

based on

counting leading zero words in the MPI routines
and copying of the significant words in memory

→ on 8-bit architectures: running time depends on the
number of octets of m

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 11 / 27

Potential Vulnerabilities in the Multiprecision Integer
Routines

it was also shown that in special cases there are potential
vulnerabilities already in the last multiprecision integer (MPI)
routine dealing with the message representative

based on

counting leading zero words in the MPI routines
and copying of the significant words in memory

→ on 8-bit architectures: running time depends on the
number of octets of m

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 11 / 27

1 Introduction

2 Decryption Oracle Attacks against the RSA Cryptosystem

3 Decryption Oracle Attacks against the McEliece Cryptosystem

4 Comparison Between the Attacks against McEliece and RSA

5 Countermeasures

6 Conclusion

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 12 / 27

The McEliece Cryptosystem is a cryptosystem based on linear
Error Correcting Codes (ECC)

Encoding in a linear ECC = Matrix multiplication (over F2):

~c = ~vG
G is called a generator matrix of the code
code word ~c is longer than message word ~v

Decoding in a linear ECC = code specific decoding algorithm

decodes ~c ′ = ~c ⊕ ~e with wt (~e) ≤ t back to ~v
t is the error correcting capability of the specific code

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 13 / 27

The McEliece Cryptosystem is a cryptosystem based on linear
Error Correcting Codes (ECC)

Encoding in a linear ECC = Matrix multiplication (over F2):

~c = ~vG
G is called a generator matrix of the code
code word ~c is longer than message word ~v

Decoding in a linear ECC = code specific decoding algorithm

decodes ~c ′ = ~c ⊕ ~e with wt (~e) ≤ t back to ~v
t is the error correcting capability of the specific code

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 13 / 27

The McEliece Cryptosystem is a cryptosystem based on linear
Error Correcting Codes (ECC)

Encoding in a linear ECC = Matrix multiplication (over F2):

~c = ~vG
G is called a generator matrix of the code
code word ~c is longer than message word ~v

Decoding in a linear ECC = code specific decoding algorithm

decodes ~c ′ = ~c ⊕ ~e with wt (~e) ≤ t back to ~v
t is the error correcting capability of the specific code

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 13 / 27

The McEliece Cryptosystem is a cryptosystem based on linear
Error Correcting Codes (ECC)

Encoding in a linear ECC = Matrix multiplication (over F2):

~c = ~vG
G is called a generator matrix of the code
code word ~c is longer than message word ~v

Decoding in a linear ECC = code specific decoding algorithm

decodes ~c ′ = ~c ⊕ ~e with wt (~e) ≤ t back to ~v
t is the error correcting capability of the specific code

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 13 / 27

The McEliece Cryptosystem is a cryptosystem based on linear
Error Correcting Codes (ECC)

Encoding in a linear ECC = Matrix multiplication (over F2):

~c = ~vG
G is called a generator matrix of the code
code word ~c is longer than message word ~v

Decoding in a linear ECC = code specific decoding algorithm

decodes ~c ′ = ~c ⊕ ~e with wt (~e) ≤ t back to ~v
t is the error correcting capability of the specific code

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 13 / 27

The McEliece Cryptosystem is a cryptosystem based on linear
Error Correcting Codes (ECC)

Encoding in a linear ECC = Matrix multiplication (over F2):

~c = ~vG
G is called a generator matrix of the code
code word ~c is longer than message word ~v

Decoding in a linear ECC = code specific decoding algorithm

decodes ~c ′ = ~c ⊕ ~e with wt (~e) ≤ t back to ~v
t is the error correcting capability of the specific code

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 13 / 27

The McEliece Cryptosystem is a cryptosystem based on linear
Error Correcting Codes (ECC)

Encoding in a linear ECC = Matrix multiplication (over F2):

~c = ~vG
G is called a generator matrix of the code
code word ~c is longer than message word ~v

Decoding in a linear ECC = code specific decoding algorithm

decodes ~c ′ = ~c ⊕ ~e with wt (~e) ≤ t back to ~v
t is the error correcting capability of the specific code

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 13 / 27

The McEliece Cryptosystem is a cryptosystem based on linear
Error Correcting Codes (ECC)

Encoding in a linear ECC = Matrix multiplication (over F2):

~c = ~vG
G is called a generator matrix of the code
code word ~c is longer than message word ~v

Decoding in a linear ECC = code specific decoding algorithm

decodes ~c ′ = ~c ⊕ ~e with wt (~e) ≤ t back to ~v
t is the error correcting capability of the specific code

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 13 / 27

McEliece Encryption: ≈ Encoding a message word in an
unknown code:

~z = ~vGp ⊕ ~e , wt (~e) = t
Gp is the public key (public generator matrix)

McEliece Decryption: possible because the secret code is
known:

Gp 6= Gs

but the actual secret code is “hidden” in Gp

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 14 / 27

McEliece Encryption: ≈ Encoding a message word in an
unknown code:

~z = ~vGp ⊕ ~e , wt (~e) = t
Gp is the public key (public generator matrix)

McEliece Decryption: possible because the secret code is
known:

Gp 6= Gs

but the actual secret code is “hidden” in Gp

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 14 / 27

McEliece Encryption: ≈ Encoding a message word in an
unknown code:

~z = ~vGp ⊕ ~e , wt (~e) = t
Gp is the public key (public generator matrix)

McEliece Decryption: possible because the secret code is
known:

Gp 6= Gs

but the actual secret code is “hidden” in Gp

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 14 / 27

McEliece Encryption: ≈ Encoding a message word in an
unknown code:

~z = ~vGp ⊕ ~e , wt (~e) = t
Gp is the public key (public generator matrix)

McEliece Decryption: possible because the secret code is
known:

Gp 6= Gs

but the actual secret code is “hidden” in Gp

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 14 / 27

McEliece Encryption: ≈ Encoding a message word in an
unknown code:

~z = ~vGp ⊕ ~e , wt (~e) = t
Gp is the public key (public generator matrix)

McEliece Decryption: possible because the secret code is
known:

Gp 6= Gs

but the actual secret code is “hidden” in Gp

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 14 / 27

McEliece Encryption: ≈ Encoding a message word in an
unknown code:

~z = ~vGp ⊕ ~e , wt (~e) = t
Gp is the public key (public generator matrix)

McEliece Decryption: possible because the secret code is
known:

Gp 6= Gs

but the actual secret code is “hidden” in Gp

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 14 / 27

Timing Effects in the McEliece Decryption for t = 50

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 30 35 40 45 50 55 60

cy
cl

es
 ta

ke
n

by
 d

ec
ry

pt
io

n
op

er
at

io
n

error weight w

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 15 / 27

Exploitation of the Timing Effects

An attacker wishes to decrypt a certain ciphertext ~z

he creates manipulated versions of this ciphertext:

in each he flips a different bit
and thus carries now t − 1 or t + 1 errors

he observes the decryption and (through timing) tries to
determine whether

wt (~e) = t − 1 → the flipped bit was an error position
wt (~e) = t + 1 → the flipped bit was NOT an error position

he reconstructs ~e used during encryption and thus can recover
the message

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 16 / 27

Exploitation of the Timing Effects

An attacker wishes to decrypt a certain ciphertext ~z

he creates manipulated versions of this ciphertext:

in each he flips a different bit
and thus carries now t − 1 or t + 1 errors

he observes the decryption and (through timing) tries to
determine whether

wt (~e) = t − 1 → the flipped bit was an error position
wt (~e) = t + 1 → the flipped bit was NOT an error position

he reconstructs ~e used during encryption and thus can recover
the message

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 16 / 27

Exploitation of the Timing Effects

An attacker wishes to decrypt a certain ciphertext ~z

he creates manipulated versions of this ciphertext:

in each he flips a different bit
and thus carries now t − 1 or t + 1 errors

he observes the decryption and (through timing) tries to
determine whether

wt (~e) = t − 1 → the flipped bit was an error position
wt (~e) = t + 1 → the flipped bit was NOT an error position

he reconstructs ~e used during encryption and thus can recover
the message

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 16 / 27

Exploitation of the Timing Effects

An attacker wishes to decrypt a certain ciphertext ~z

he creates manipulated versions of this ciphertext:

in each he flips a different bit
and thus carries now t − 1 or t + 1 errors

he observes the decryption and (through timing) tries to
determine whether

wt (~e) = t − 1 → the flipped bit was an error position
wt (~e) = t + 1 → the flipped bit was NOT an error position

he reconstructs ~e used during encryption and thus can recover
the message

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 16 / 27

Exploitation of the Timing Effects

An attacker wishes to decrypt a certain ciphertext ~z

he creates manipulated versions of this ciphertext:

in each he flips a different bit
and thus carries now t − 1 or t + 1 errors

he observes the decryption and (through timing) tries to
determine whether

wt (~e) = t − 1 → the flipped bit was an error position
wt (~e) = t + 1 → the flipped bit was NOT an error position

he reconstructs ~e used during encryption and thus can recover
the message

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 16 / 27

Exploitation of the Timing Effects

An attacker wishes to decrypt a certain ciphertext ~z

he creates manipulated versions of this ciphertext:

in each he flips a different bit
and thus carries now t − 1 or t + 1 errors

he observes the decryption and (through timing) tries to
determine whether

wt (~e) = t − 1 → the flipped bit was an error position
wt (~e) = t + 1 → the flipped bit was NOT an error position

he reconstructs ~e used during encryption and thus can recover
the message

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 16 / 27

Exploitation of the Timing Effects

An attacker wishes to decrypt a certain ciphertext ~z

he creates manipulated versions of this ciphertext:

in each he flips a different bit
and thus carries now t − 1 or t + 1 errors

he observes the decryption and (through timing) tries to
determine whether

wt (~e) = t − 1 → the flipped bit was an error position
wt (~e) = t + 1 → the flipped bit was NOT an error position

he reconstructs ~e used during encryption and thus can recover
the message

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 16 / 27

Exploitation of the Timing Effects

An attacker wishes to decrypt a certain ciphertext ~z

he creates manipulated versions of this ciphertext:

in each he flips a different bit
and thus carries now t − 1 or t + 1 errors

he observes the decryption and (through timing) tries to
determine whether

wt (~e) = t − 1 → the flipped bit was an error position
wt (~e) = t + 1 → the flipped bit was NOT an error position

he reconstructs ~e used during encryption and thus can recover
the message

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 16 / 27

A new Vulnerability in the Root Finding Algorithm

During the McEliece decryption the Error Locator Polynomial
(ELP) plays a key role

it is computed
its roots (zeros) are determined

Previous works on timing attacks took only into account the
effect of the degree of the ELP on the running time (→ linear
incline for wt (~e) ≤ t)

But an efficient root finding algorithm can introduce a new
vulnerability:

to speed up the time consuming root finding → factoring of
the ELP
but: the number of roots resp. factor polynomials in the ELP
is different for

wt (~e) ≤ t
wt (~e) > t

→ difference in running time for these two cases!

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 17 / 27

A new Vulnerability in the Root Finding Algorithm

During the McEliece decryption the Error Locator Polynomial
(ELP) plays a key role

it is computed
its roots (zeros) are determined

Previous works on timing attacks took only into account the
effect of the degree of the ELP on the running time (→ linear
incline for wt (~e) ≤ t)

But an efficient root finding algorithm can introduce a new
vulnerability:

to speed up the time consuming root finding → factoring of
the ELP
but: the number of roots resp. factor polynomials in the ELP
is different for

wt (~e) ≤ t
wt (~e) > t

→ difference in running time for these two cases!

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 17 / 27

A new Vulnerability in the Root Finding Algorithm

During the McEliece decryption the Error Locator Polynomial
(ELP) plays a key role

it is computed
its roots (zeros) are determined

Previous works on timing attacks took only into account the
effect of the degree of the ELP on the running time (→ linear
incline for wt (~e) ≤ t)

But an efficient root finding algorithm can introduce a new
vulnerability:

to speed up the time consuming root finding → factoring of
the ELP
but: the number of roots resp. factor polynomials in the ELP
is different for

wt (~e) ≤ t
wt (~e) > t

→ difference in running time for these two cases!

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 17 / 27

A new Vulnerability in the Root Finding Algorithm

During the McEliece decryption the Error Locator Polynomial
(ELP) plays a key role

it is computed
its roots (zeros) are determined

Previous works on timing attacks took only into account the
effect of the degree of the ELP on the running time (→ linear
incline for wt (~e) ≤ t)

But an efficient root finding algorithm can introduce a new
vulnerability:

to speed up the time consuming root finding → factoring of
the ELP
but: the number of roots resp. factor polynomials in the ELP
is different for

wt (~e) ≤ t
wt (~e) > t

→ difference in running time for these two cases!

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 17 / 27

A new Vulnerability in the Root Finding Algorithm

During the McEliece decryption the Error Locator Polynomial
(ELP) plays a key role

it is computed
its roots (zeros) are determined

Previous works on timing attacks took only into account the
effect of the degree of the ELP on the running time (→ linear
incline for wt (~e) ≤ t)

But an efficient root finding algorithm can introduce a new
vulnerability:

to speed up the time consuming root finding → factoring of
the ELP
but: the number of roots resp. factor polynomials in the ELP
is different for

wt (~e) ≤ t
wt (~e) > t

→ difference in running time for these two cases!

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 17 / 27

A new Vulnerability in the Root Finding Algorithm

During the McEliece decryption the Error Locator Polynomial
(ELP) plays a key role

it is computed
its roots (zeros) are determined

Previous works on timing attacks took only into account the
effect of the degree of the ELP on the running time (→ linear
incline for wt (~e) ≤ t)

But an efficient root finding algorithm can introduce a new
vulnerability:

to speed up the time consuming root finding → factoring of
the ELP
but: the number of roots resp. factor polynomials in the ELP
is different for

wt (~e) ≤ t
wt (~e) > t

→ difference in running time for these two cases!

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 17 / 27

A new Vulnerability in the Root Finding Algorithm

During the McEliece decryption the Error Locator Polynomial
(ELP) plays a key role

it is computed
its roots (zeros) are determined

Previous works on timing attacks took only into account the
effect of the degree of the ELP on the running time (→ linear
incline for wt (~e) ≤ t)

But an efficient root finding algorithm can introduce a new
vulnerability:

to speed up the time consuming root finding → factoring of
the ELP
but: the number of roots resp. factor polynomials in the ELP
is different for

wt (~e) ≤ t
wt (~e) > t

→ difference in running time for these two cases!

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 17 / 27

A new Vulnerability in the Root Finding Algorithm

During the McEliece decryption the Error Locator Polynomial
(ELP) plays a key role

it is computed
its roots (zeros) are determined

Previous works on timing attacks took only into account the
effect of the degree of the ELP on the running time (→ linear
incline for wt (~e) ≤ t)

But an efficient root finding algorithm can introduce a new
vulnerability:

to speed up the time consuming root finding → factoring of
the ELP
but: the number of roots resp. factor polynomials in the ELP
is different for

wt (~e) ≤ t
wt (~e) > t

→ difference in running time for these two cases!

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 17 / 27

A new Vulnerability in the Root Finding Algorithm

During the McEliece decryption the Error Locator Polynomial
(ELP) plays a key role

it is computed
its roots (zeros) are determined

Previous works on timing attacks took only into account the
effect of the degree of the ELP on the running time (→ linear
incline for wt (~e) ≤ t)

But an efficient root finding algorithm can introduce a new
vulnerability:

to speed up the time consuming root finding → factoring of
the ELP
but: the number of roots resp. factor polynomials in the ELP
is different for

wt (~e) ≤ t
wt (~e) > t

→ difference in running time for these two cases!

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 17 / 27

A new Vulnerability in the Root Finding Algorithm

During the McEliece decryption the Error Locator Polynomial
(ELP) plays a key role

it is computed
its roots (zeros) are determined

Previous works on timing attacks took only into account the
effect of the degree of the ELP on the running time (→ linear
incline for wt (~e) ≤ t)

But an efficient root finding algorithm can introduce a new
vulnerability:

to speed up the time consuming root finding → factoring of
the ELP
but: the number of roots resp. factor polynomials in the ELP
is different for

wt (~e) ≤ t
wt (~e) > t

→ difference in running time for these two cases!

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 17 / 27

Timing Effects from the Factoring inside the Root Finding
Algorithm

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 18 / 27

1 Introduction

2 Decryption Oracle Attacks against the RSA Cryptosystem

3 Decryption Oracle Attacks against the McEliece Cryptosystem

4 Comparison Between the Attacks against McEliece and RSA

5 Countermeasures

6 Conclusion

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 19 / 27

Comparison of the McEliece and RSA cryptosystems

RSA McEliece
homom.
Property

E(a) · E(b) ≡ E(a ·
b) mod n

E(a)⊕E(b) = E(a⊕b)

observ.
Prop.

(lead. octet = 0?) #
octets in m

wt (~e)

Decryption
. . .

. . .
comp. ELP

Final Zn Operation Root Finding for ELP

Message
Encoding

Encoding in Zn Encoding in Fn
2

CCA2
Check

OAEP Check appropriate CCA2
Check

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 20 / 27

1 Introduction

2 Decryption Oracle Attacks against the RSA Cryptosystem

3 Decryption Oracle Attacks against the McEliece Cryptosystem

4 Comparison Between the Attacks against McEliece and RSA

5 Countermeasures

6 Conclusion

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 21 / 27

Ideal Countermeasures

RSA McEliece
homom.
Property

E(a) · E(b) ≡ E(a ·
b) mod n

E(a)⊕E(b) = E(a⊕b)

observ.
Prop.

(lead. octet = 0?) #
octets in m

wt (~e)

Decryption
. . .

. . .
comp. ELP

Final Zn Operation Root Finding for ELP

Message
Encoding

Encoding in Zn Encoding in Fn
2

CCA2
Check

OAEP Check appropriate CCA2
Check

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 22 / 27

Ideal Countermeasures

Ideal Countermeasures would already ensure the observable
plaintext property to be unambigous during the basic
decryption

then the subsequent operations (encoding of the message
representative and the CCA2-conversion) would be relieved
from countermeasures

In McEliece the number of errors can be forced to be t during
decryption

But RSA generally allows any number of leading zero octets !

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 23 / 27

Ideal Countermeasures

Ideal Countermeasures would already ensure the observable
plaintext property to be unambigous during the basic
decryption

then the subsequent operations (encoding of the message
representative and the CCA2-conversion) would be relieved
from countermeasures

In McEliece the number of errors can be forced to be t during
decryption

But RSA generally allows any number of leading zero octets !

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 23 / 27

Ideal Countermeasures

Ideal Countermeasures would already ensure the observable
plaintext property to be unambigous during the basic
decryption

then the subsequent operations (encoding of the message
representative and the CCA2-conversion) would be relieved
from countermeasures

In McEliece the number of errors can be forced to be t during
decryption

But RSA generally allows any number of leading zero octets !

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 23 / 27

Ideal Countermeasures

Ideal Countermeasures would already ensure the observable
plaintext property to be unambigous during the basic
decryption

then the subsequent operations (encoding of the message
representative and the CCA2-conversion) would be relieved
from countermeasures

In McEliece the number of errors can be forced to be t during
decryption

But RSA generally allows any number of leading zero octets !

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 23 / 27

General Aspects of Countermeasures

the critical plaintext property

(RSA: number of leading zero octets
McEliece: number of “errors” in ciphertext)

must not be revealed through timing

to this end

certain algorithm part must have timing irrespective of that
plaintext property (e.g. encoding of Zn elements)
at certain points irregular data simply should be ignored (e.g.
non-zero value of the “leading octet” Y in RSA-OAEP)
at certain points fake data has to be created (McEliece)
not truly randomly !

but pseudorandomly derived from the ciphertext

else the indeterministic behaviour of the decryption oracle
might indicate the critical plaintext property

While usage of the actual key can be avoided, the plaintext
will always appear in the computation

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 24 / 27

General Aspects of Countermeasures

the critical plaintext property

(RSA: number of leading zero octets
McEliece: number of “errors” in ciphertext)

must not be revealed through timing

to this end

certain algorithm part must have timing irrespective of that
plaintext property (e.g. encoding of Zn elements)
at certain points irregular data simply should be ignored (e.g.
non-zero value of the “leading octet” Y in RSA-OAEP)
at certain points fake data has to be created (McEliece)
not truly randomly !

but pseudorandomly derived from the ciphertext

else the indeterministic behaviour of the decryption oracle
might indicate the critical plaintext property

While usage of the actual key can be avoided, the plaintext
will always appear in the computation

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 24 / 27

General Aspects of Countermeasures

the critical plaintext property

(RSA: number of leading zero octets
McEliece: number of “errors” in ciphertext)

must not be revealed through timing

to this end

certain algorithm part must have timing irrespective of that
plaintext property (e.g. encoding of Zn elements)
at certain points irregular data simply should be ignored (e.g.
non-zero value of the “leading octet” Y in RSA-OAEP)
at certain points fake data has to be created (McEliece)
not truly randomly !

but pseudorandomly derived from the ciphertext

else the indeterministic behaviour of the decryption oracle
might indicate the critical plaintext property

While usage of the actual key can be avoided, the plaintext
will always appear in the computation

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 24 / 27

General Aspects of Countermeasures

the critical plaintext property

(RSA: number of leading zero octets
McEliece: number of “errors” in ciphertext)

must not be revealed through timing

to this end

certain algorithm part must have timing irrespective of that
plaintext property (e.g. encoding of Zn elements)
at certain points irregular data simply should be ignored (e.g.
non-zero value of the “leading octet” Y in RSA-OAEP)
at certain points fake data has to be created (McEliece)
not truly randomly !

but pseudorandomly derived from the ciphertext

else the indeterministic behaviour of the decryption oracle
might indicate the critical plaintext property

While usage of the actual key can be avoided, the plaintext
will always appear in the computation

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 24 / 27

General Aspects of Countermeasures

the critical plaintext property

(RSA: number of leading zero octets
McEliece: number of “errors” in ciphertext)

must not be revealed through timing

to this end

certain algorithm part must have timing irrespective of that
plaintext property (e.g. encoding of Zn elements)
at certain points irregular data simply should be ignored (e.g.
non-zero value of the “leading octet” Y in RSA-OAEP)
at certain points fake data has to be created (McEliece)
not truly randomly !

but pseudorandomly derived from the ciphertext

else the indeterministic behaviour of the decryption oracle
might indicate the critical plaintext property

While usage of the actual key can be avoided, the plaintext
will always appear in the computation

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 24 / 27

General Aspects of Countermeasures

the critical plaintext property

(RSA: number of leading zero octets
McEliece: number of “errors” in ciphertext)

must not be revealed through timing

to this end

certain algorithm part must have timing irrespective of that
plaintext property (e.g. encoding of Zn elements)
at certain points irregular data simply should be ignored (e.g.
non-zero value of the “leading octet” Y in RSA-OAEP)
at certain points fake data has to be created (McEliece)
not truly randomly !

but pseudorandomly derived from the ciphertext

else the indeterministic behaviour of the decryption oracle
might indicate the critical plaintext property

While usage of the actual key can be avoided, the plaintext
will always appear in the computation

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 24 / 27

General Aspects of Countermeasures

the critical plaintext property

(RSA: number of leading zero octets
McEliece: number of “errors” in ciphertext)

must not be revealed through timing

to this end

certain algorithm part must have timing irrespective of that
plaintext property (e.g. encoding of Zn elements)
at certain points irregular data simply should be ignored (e.g.
non-zero value of the “leading octet” Y in RSA-OAEP)
at certain points fake data has to be created (McEliece)
not truly randomly !

but pseudorandomly derived from the ciphertext

else the indeterministic behaviour of the decryption oracle
might indicate the critical plaintext property

While usage of the actual key can be avoided, the plaintext
will always appear in the computation

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 24 / 27

General Aspects of Countermeasures

the critical plaintext property

(RSA: number of leading zero octets
McEliece: number of “errors” in ciphertext)

must not be revealed through timing

to this end

certain algorithm part must have timing irrespective of that
plaintext property (e.g. encoding of Zn elements)
at certain points irregular data simply should be ignored (e.g.
non-zero value of the “leading octet” Y in RSA-OAEP)
at certain points fake data has to be created (McEliece)
not truly randomly !

but pseudorandomly derived from the ciphertext

else the indeterministic behaviour of the decryption oracle
might indicate the critical plaintext property

While usage of the actual key can be avoided, the plaintext
will always appear in the computation

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 24 / 27

General Aspects of Countermeasures

the critical plaintext property

(RSA: number of leading zero octets
McEliece: number of “errors” in ciphertext)

must not be revealed through timing

to this end

certain algorithm part must have timing irrespective of that
plaintext property (e.g. encoding of Zn elements)
at certain points irregular data simply should be ignored (e.g.
non-zero value of the “leading octet” Y in RSA-OAEP)
at certain points fake data has to be created (McEliece)
not truly randomly !

but pseudorandomly derived from the ciphertext

else the indeterministic behaviour of the decryption oracle
might indicate the critical plaintext property

While usage of the actual key can be avoided, the plaintext
will always appear in the computation

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 24 / 27

1 Introduction

2 Decryption Oracle Attacks against the RSA Cryptosystem

3 Decryption Oracle Attacks against the McEliece Cryptosystem

4 Comparison Between the Attacks against McEliece and RSA

5 Countermeasures

6 Conclusion

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 25 / 27

Conclusion

With respect to message aimed side channel attacks,

We showed recent results for the RSA cryptosystem and new
results for the McEliece cryptosystem
By structuring and comparing the vulnerabilities of both
cryptosystems, we outlined the general approach for the
analysis of public key cryptosystems with homomorphic
properties
We pointed some aspects concerning the countermeasures
against such attacks

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 26 / 27

Conclusion

With respect to message aimed side channel attacks,

We showed recent results for the RSA cryptosystem and new
results for the McEliece cryptosystem
By structuring and comparing the vulnerabilities of both
cryptosystems, we outlined the general approach for the
analysis of public key cryptosystems with homomorphic
properties
We pointed some aspects concerning the countermeasures
against such attacks

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 26 / 27

Conclusion

With respect to message aimed side channel attacks,

We showed recent results for the RSA cryptosystem and new
results for the McEliece cryptosystem
By structuring and comparing the vulnerabilities of both
cryptosystems, we outlined the general approach for the
analysis of public key cryptosystems with homomorphic
properties
We pointed some aspects concerning the countermeasures
against such attacks

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 26 / 27

Conclusion

With respect to message aimed side channel attacks,

We showed recent results for the RSA cryptosystem and new
results for the McEliece cryptosystem
By structuring and comparing the vulnerabilities of both
cryptosystems, we outlined the general approach for the
analysis of public key cryptosystems with homomorphic
properties
We pointed some aspects concerning the countermeasures
against such attacks

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 26 / 27

Thank You!

Decryption Oracle Attacks against Public Key Cryptosystems Falko Strenzke 27 / 27

	Introduction
	Decryption Oracle Attacks against the RSA Cryptosystem
	Decryption Oracle Attacks against the McEliece Cryptosystem
	Comparison Between the Attacks against McEliece and RSA
	Countermeasures
	Conclusion

