Timing Attacks against the Syndrome Inversion in code-based Cryptosystems

Falko Strenzke

Cryptography and Computeralgebra, Department of Computer Science,
Technische Universität Darmstadt, Germany,
fstrenzke@crypto-source.de

June 5, 2013

Introduction

- Topic: recovery of the secret key of a code-based McEliece or Niederreiter cryptosystem through a timing side-channel
- Practical local timing attack
- Combination of three different vulnerabilities

Introduction

- Topic: recovery of the secret key of a code-based McEliece or Niederreiter cryptosystem through a timing side-channel
- Practical local timing attack
- Combination of three different vulnerabilities

Introduction

- Topic: recovery of the secret key of a code-based McEliece or Niederreiter cryptosystem through a timing side-channel
- Practical local timing attack
- Combination of three different vulnerabilities

- 1 Introduction
- 2 Preliminaries
- 3 Previous Work
- 4 New Vulnerabilities
- 5 Building the Attack
- 6 Experimental Results
- 7 Countermeasures
- 8 Conclusion

- 1 Introduction
- 2 Preliminaries
- 3 Previous Work
- 4 New Vulnerabilities
- 5 Building the Attack
- 6 Experimental Results
- 7 Countermeasures
- 8 Conclusion

Parameters of a Goppa Code

- irreducible polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t (the Goppa Polynomial)
- support $\Gamma=(\alpha_0,\alpha_1,\ldots,\alpha_{n-1})$, a *permutation* of \mathbb{F}_{2^m} , where $n=2^m$

Properties of the Code

- \circ the code has length n (code word length) ,
- \circ dimension k=n-mt (message length) and
- can correct up to t errors.
- o a parity check matrix H, where $cH^{\perp}=0$ if $c\in\mathcal{C}$
- example for secure parameters: n = 2048, t = 50 for 100 bit security

- Parameters of a Goppa Code
 - \circ irreducible polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t (the Goppa Polynomial)
 - support $\Gamma=(\alpha_0,\alpha_1,\ldots,\alpha_{n-1})$, a *permutation* of \mathbb{F}_{2^m} , where $n=2^m$
- Properties of the Code
 - the code has length n (code word length) ,
 - dimension k = n mt (message length) and
 - o can correct up to t errors.
 - \circ a parity check matrix H, where $cH^+=0$ if $c\in\mathcal{C}$
 - be example for secure parameters: n = 2048, t = 50 for 100 bit security

- Parameters of a Goppa Code
 - \circ irreducible polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t (the Goppa Polynomial)
 - support $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$, a permutation of \mathbb{F}_{2^m} , where $n = 2^m$
- Properties of the Code
 - the code has length n (code word length)
 - dimension k = n mt (message length) and
 - can correct up to t errors.
 - o a parity check matrix H, where $cH^+=0$ if $c\in\mathcal{C}$
 - example for secure parameters: n = 2048, t = 50 for 100 bitters security

Parameters of a Goppa Code

- \circ irreducible polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t (the Goppa Polynomial)
- support $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$, a permutation of \mathbb{F}_{2^m} , where $n = 2^m$

Properties of the Code

- the code has length *n* (code word length),
- dimension k = n mt (message length) and
- can correct up to t errors.
- a parity check matrix H, where $cH^{\top} = 0$ if $c \in C$
- example for secure parameters: n = 2048, t = 50 for 100 bit security

- Parameters of a Goppa Code
 - \circ irreducible polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t (the Goppa Polynomial)
 - support $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$, a *permutation* of \mathbb{F}_{2^m} , where $n = 2^m$
- Properties of the Code
 - the code has length *n* (code word length) ,
 - dimension k = n mt (message length) and
 - can correct up to t errors.
 - ullet a parity check matrix H, where $cH^{\top}=0$ if $c\in\mathcal{C}$
 - example for secure parameters: n = 2048, t = 50 for 100 bit security

- Parameters of a Goppa Code
 - \circ irreducible polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t (the Goppa Polynomial)
 - support $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$, a permutation of \mathbb{F}_{2^m} , where $n = 2^m$
- Properties of the Code
 - the code has length *n* (code word length) ,
 - dimension k = n mt (message length) and
 - can correct up to t errors.
 - a parity check matrix H, where $cH^{\perp} = 0$ if $c \in \mathcal{C}$
 - example for secure parameters: n = 2048, t = 50 for 100 bit security

- Parameters of a Goppa Code
 - \circ irreducible polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t (the Goppa Polynomial)
 - support $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$, a *permutation* of \mathbb{F}_{2^m} , where $n = 2^m$
- Properties of the Code
 - the code has length *n* (code word length) ,
 - dimension k = n mt (message length) and
 - can correct up to t errors.
 - a parity check matrix H, where $cH^{\perp} = 0$ if $c \in \mathcal{C}$
 - example for secure parameters: n = 2048, t = 50 for 100 bit security

- Parameters of a Goppa Code
 - \circ irreducible polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t (the Goppa Polynomial)
 - support $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$, a permutation of \mathbb{F}_{2^m} , where $n = 2^m$
- Properties of the Code
 - the code has length *n* (code word length) ,
 - dimension k = n mt (message length) and
 - \circ can correct up to t errors.
 - ullet a parity check matrix H, where $cH^{\top}=0$ if $c\in\mathcal{C}$
 - example for secure parameters: n = 2048, t = 50 for 100 bit security

- Parameters of a Goppa Code
 - \circ irreducible polynomial $g(Y) \in \mathbb{F}_{2^m}[Y]$ of degree t (the Goppa Polynomial)
 - support $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$, a permutation of \mathbb{F}_{2^m} , where $n = 2^m$
- Properties of the Code
 - the code has length *n* (code word length) ,
 - dimension k = n mt (message length) and
 - can correct up to t errors.
 - a parity check matrix H, where $cH^{\top} = 0$ if $c \in C$
 - example for secure parameters: n = 2048, t = 50 for 100 bit security

key generation

- choose the parameters n and t
- generate randomly g(Y) and Γ (determining the secret the code)
- \circ for this private code \mathcal{C}_s one has a generator matrix G_s
- the public key is $G_p = [\mathbb{I}|G_p'] = TG_s$
- encryption: $\vec{z} = \vec{m}G_p + \vec{e}$, wt $(\vec{e}) = t$
- decryption: syndrome decoding

- key generation
 - \circ choose the parameters n and t
 - generate randomly g(Y) and Γ (determining the secret the code)
 - o for this private code \mathcal{C}_s one has a generator matrix \mathcal{G}_s
 - ullet the public key is $G_p = [\mathbb{I}|G_p'] = TG_s$
- encryption: $\vec{z} = \vec{m}G_p + \vec{e}$, wt $(\vec{e}) = t$
- decryption: syndrome decoding

- key generation
 - \circ choose the parameters n and t
 - generate randomly g(Y) and Γ (determining the secret the code)
 - o for this private code \mathcal{C}_s one has a generator matrix \mathcal{G}_s
 - the public key is $G_p = [\mathbb{I}|G_p'] = TG_s$
- encryption: $\vec{z} = \vec{m}G_p + \vec{e}$, wt $(\vec{e}) = t$
- decryption: syndrome decoding

- key generation
 - \circ choose the parameters n and t
 - generate randomly g(Y) and Γ (determining the secret the code)
 - \circ for this private code \mathcal{C}_s one has a generator matrix \mathcal{G}_s
 - the public key is $G_p = [\mathbb{I}|G_p'] = TG_s$
- encryption: $\vec{z} = \vec{m}G_p + \vec{e}$, wt $(\vec{e}) = t$
- decryption: syndrome decoding

- key generation
 - \circ choose the parameters n and t
 - generate randomly g(Y) and Γ (determining the secret the code)
 - \circ for this private code \mathcal{C}_s one has a generator matrix \mathcal{G}_s
 - the public key is $G_p = [\mathbb{I}|G_p'] = TG_s$
- encryption: $\vec{z} = \vec{m}G_p + \vec{e}$, wt $(\vec{e}) = t$
- decryption: syndrome decoding

- key generation
 - \circ choose the parameters n and t
 - generate randomly g(Y) and Γ (determining the secret the code)
 - \circ for this private code \mathcal{C}_s one has a generator matrix \mathcal{G}_s
 - the public key is $G_p = [\mathbb{I}|G_p'] = TG_s$
- encryption: $\vec{z} = \vec{m}G_p + \vec{e}$, $\operatorname{wt}(\vec{e}) = t$
- decryption: syndrome decoding

- key generation
 - \circ choose the parameters n and t
 - generate randomly g(Y) and Γ (determining the secret the code)
 - \circ for this private code \mathcal{C}_s one has a generator matrix G_s
 - the public key is $G_p = [\mathbb{I}|G_p'] = TG_s$
- encryption: $\vec{z} = \vec{m}G_p + \vec{e}$, $\operatorname{wt}(\vec{e}) = t$
- decryption: syndrome decoding

- secret key: g(Y), $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$
- ullet input: distorted codeword $ec{e} \oplus ec{c}$
- output: error vector $\vec{e} \in \mathbb{F}_{2^m}^n$, $\operatorname{wt}(\vec{e}) = t$ chosen during encryption

$$\circ S(Y) \leftarrow \underbrace{(\vec{e} \oplus \vec{c})H^{\top}}_{\in \mathbb{F}^t_{2m}} (Y^{t-1}, \cdots, Y, 1)^{\top}$$

$$\sigma$$
 $\tau(Y) \leftarrow \sqrt{S^{-1}(Y) + Y} \bmod g(Y) \ / /$ by EEA

•
$$(\alpha(Y), \beta(Y)) \leftarrow \text{EEA}(g(Y), \tau(Y))$$

$$\circ \ \sigma(Y) \leftarrow \alpha^2(Y) + Y\beta^2(Y)$$

•
$$e_i \leftarrow 1$$
 iff $\sigma(\alpha_i) = 0$

- secret key: g(Y), $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$
- ullet input: distorted codeword $ec{e} \oplus ec{c}$
- output: error vector $\vec{e} \in \mathbb{F}_{2^m}^n$, $\operatorname{wt}(\vec{e}) = t$ chosen during encryption

$$\circ S(Y) \leftarrow \underbrace{(\vec{e} \oplus \vec{c})H^{\top}}_{\in \mathbb{F}^t_{2m}} (Y^{t-1}, \cdots, Y, 1)^{\top}$$

$$\circ \ au(Y) \leftarrow \sqrt{S^{-1}(Y) + Y} mod g(Y) \ // \ \mathsf{by} \ \mathsf{EEA}$$

•
$$(\alpha(Y), \beta(Y)) \leftarrow \text{EEA}(g(Y), \tau(Y))$$

$$\circ \ \sigma(Y) \leftarrow \alpha^2(Y) + Y\beta^2(Y)$$

•
$$e_i \leftarrow 1$$
 iff $\sigma(\alpha_i) = 0$

- secret key: g(Y), $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$
- ullet input: distorted codeword $ec{e} \oplus ec{c}$
- output: error vector $\vec{e} \in \mathbb{F}_{2^m}^n$, $\operatorname{wt}(\vec{e}) = t$ chosen during encryption

$$S(Y) \leftarrow \underbrace{(\vec{e} \oplus \vec{c})H^{\top}}_{\in \mathbb{F}^{t}_{2m}} (Y^{t-1}, \cdots, Y, 1)^{\top}$$

$$\tau(Y) \leftarrow \sqrt{S^{-1}(Y) + Y} \mod g(Y) // \text{ by EEA}$$

$$\bullet \ (\alpha(Y), \beta(Y)) \leftarrow \text{EEA}(g(Y), \tau(Y))$$

•
$$\sigma(Y) \leftarrow \alpha^2(Y) + Y\beta^2(Y)$$

•
$$e_i \leftarrow 1$$
 iff $\sigma(\alpha_i) = 0$

- secret key: g(Y), $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$
- ullet input: distorted codeword $ec{e} \oplus ec{c}$
- output: error vector $\vec{e} \in \mathbb{F}_{2^m}^n$, $\operatorname{wt}(\vec{e}) = t$ chosen during encryption

$$\circ \ S(Y) \leftarrow \underbrace{\left(\vec{e} \oplus \vec{c}\right) H^{\top}}_{\in \mathbb{F}_{2m}^{t}} \left(Y^{t-1}, \cdots, Y, 1\right)^{\top}$$

$$\circ \ au(Y) \leftarrow \sqrt{S^{-1}(Y) + Y} mod g(Y) \ // \ \mathsf{by} \ \mathsf{EEA}$$

$$(\alpha(Y), \beta(Y)) \leftarrow \text{EEA}(g(Y), \tau(Y))$$

$$\circ \ \sigma(Y) \leftarrow \alpha^2(Y) + Y\beta^2(Y)$$

•
$$e_i \leftarrow 1$$
 iff $\sigma(\alpha_i) = 0$

- secret key: g(Y), $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$
- ullet input: distorted codeword $ec{e} \oplus ec{c}$
- output: error vector $\vec{e} \in \mathbb{F}_{2^m}^n$, $\operatorname{wt}\left(\vec{e}\right) = t$ chosen during encryption

•
$$S(Y) \leftarrow \underbrace{(\vec{e} \oplus \vec{c})H^{\top}}_{\in \mathbb{F}_{2m}^t} (Y^{t-1}, \cdots, Y, 1)^{\top}$$

•
$$\tau(Y) \leftarrow \sqrt{S^{-1}(Y) + Y} \mod g(Y) // \text{ by EEA}$$

•
$$(\alpha(Y), \beta(Y)) \leftarrow \text{EEA}(g(Y), \tau(Y))$$

•
$$\sigma(Y) \leftarrow \alpha^2(Y) + Y\beta^2(Y)$$

•
$$e_i \leftarrow 1$$
 iff $\sigma(\alpha_i) = 0$

- secret key: g(Y), $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$
- ullet input: distorted codeword $ec{e} \oplus ec{c}$
- output: error vector $\vec{e} \in \mathbb{F}_{2^m}^n$, $\operatorname{wt}\left(\vec{e}\right) = t$ chosen during encryption

•
$$S(Y) \leftarrow \underbrace{(\vec{e} \oplus \vec{c})H^{\top}}_{\in \mathbb{F}_{2m}^t} (Y^{t-1}, \cdots, Y, 1)^{\top}$$

•
$$\tau(Y) \leftarrow \sqrt{S^{-1}(Y) + Y} \mod g(Y) // \text{ by EEA}$$

•
$$(\alpha(Y), \beta(Y)) \leftarrow \text{EEA}(g(Y), \tau(Y))$$

•
$$\sigma(Y) \leftarrow \alpha^2(Y) + Y\beta^2(Y)$$

•
$$e_i \leftarrow 1$$
 iff $\sigma(\alpha_i) = 0$

- secret key: g(Y), $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$
- ullet input: distorted codeword $ec{e} \oplus ec{c}$
- output: error vector $\vec{e} \in \mathbb{F}_{2^m}^n$, $\operatorname{wt}(\vec{e}) = t$ chosen during encryption

•
$$S(Y) \leftarrow \underbrace{(\vec{e} \oplus \vec{c})H^{\top}}_{\in \mathbb{F}_{2m}^t} (Y^{t-1}, \cdots, Y, 1)^{\top}$$

•
$$\tau(Y) \leftarrow \sqrt{S^{-1}(Y) + Y} \mod g(Y) // \text{ by EEA}$$

•
$$(\alpha(Y), \beta(Y)) \leftarrow \text{EEA}(g(Y), \tau(Y))$$

$$\circ \ \sigma(Y) \leftarrow \alpha^2(Y) + Y\beta^2(Y)$$

•
$$e_i \leftarrow 1$$
 iff $\sigma(\alpha_i) = 0$

- secret key: g(Y), $\Gamma = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})$
- ullet input: distorted codeword $ec{e} \oplus ec{c}$
- output: error vector $\vec{e} \in \mathbb{F}_{2^m}^n$, $\operatorname{wt}(\vec{e}) = t$ chosen during encryption

•
$$S(Y) \leftarrow \underbrace{(\vec{e} \oplus \vec{c})H^{\top}}_{\in \mathbb{F}_{2m}^t} (Y^{t-1}, \cdots, Y, 1)^{\top}$$

•
$$\tau(Y) \leftarrow \sqrt{S^{-1}(Y) + Y} \mod g(Y) // \text{ by EEA}$$

•
$$(\alpha(Y), \beta(Y)) \leftarrow \text{EEA}(g(Y), \tau(Y))$$

•
$$\sigma(Y) \leftarrow \alpha^2(Y) + Y\beta^2(Y)$$

•
$$e_i \leftarrow 1$$
 iff $\sigma(\alpha_i) = 0$

Error Positions and Support Elements

$$\vec{e} = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 & 0 & \dots & 0 & 1 & 0 & \dots \end{pmatrix}$$

$$indexes: 0 & 1 & \dots & f_1 & \dots & f_2$$

$$\epsilon_1 & & \epsilon_2 & & & \\ & = \alpha_{f_1} & & = \alpha_{f_2}$$

$$\bullet \sigma(Y) = \prod_{i=0}^{w-1} (\alpha_{f_i} - Y)$$

Error Positions and Support Elements

$$\vec{e} = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 & 0 & \dots & 0 & 1 & 0 & \dots &) \\ \text{indexes:} & 0 & 1 & \dots & f_1 & & & f_2 & & \\ \hline & & \epsilon_1 & & & \epsilon_2 & & \\ & & = \alpha_{f_1} & & & = \alpha_{f_2} & & \\ & & & \sigma(Y) = \prod_{i=0}^{w-1} (\alpha_{f_i} - Y) & & \\ & & & \Gamma = (\alpha_0, \alpha_1, \dots \alpha_{p-1}) & & & \\ \end{bmatrix}$$

- 1 Introduction
- 2 Preliminaries
- 3 Previous Work
- 4 New Vulnerabilities
- 5 Building the Attack
- 6 Experimental Results
- 7 Countermeasures
- 8 Conclusion

Vulnerability against weight 4 error vectors

previous work (PQCrypto 2010, Strenzke):

- input w = 4 error vectors \rightarrow measure decryption time
- \circ time $\to N$ (number of iterations in the key equation solving FFA)
- $N=1 \rightarrow \sum_{i=1}^4 \epsilon_i \neq 0$
- $N = 0 \rightarrow \sum_{i=1}^4 \epsilon_i = 0$
- two Problems:
 - insufficient information
 - practicality as timing attack left open

Vulnerability against weight 4 error vectors

- previous work (PQCrypto 2010, Strenzke):
 - input w = 4 error vectors \rightarrow measure decryption time
 - time $\rightarrow N$ (number of iterations in the key equation solving EEA)
 - $N = 1 \rightarrow \sum_{i=1}^{4} \epsilon_i \neq 0$
 - $N = 0 \rightarrow \sum_{i=1}^4 \epsilon_i = 0$
 - two Problems:
 - insufficient information
 - practicality as timing attack left open

Vulnerability against weight 4 error vectors

- previous work (PQCrypto 2010, Strenzke):
 - input w = 4 error vectors \rightarrow measure decryption time
 - ullet time ullet N (number of iterations in the key equation solving EEA)
 - $N = 1 \rightarrow \sum_{i=1}^4 \epsilon_i \neq 0$
 - $N=0 \rightarrow \sum_{i=1}^4 \epsilon_i = 0$
 - two Problems:
 - insufficient information
 - practicality as timing attack left open

- previous work (PQCrypto 2010, Strenzke):
 - input w = 4 error vectors \rightarrow measure decryption time
 - ullet time ullet N (number of iterations in the key equation solving EEA)

$$N = 1 \rightarrow \sum_{i=1}^{4} \epsilon_i \neq 0$$

$$N = 0 \rightarrow \sum_{i=1}^4 \epsilon_i = 0$$

o two Problems:

insufficient information

practicality as timing attack left open

- previous work (PQCrypto 2010, Strenzke):
 - input w = 4 error vectors \rightarrow measure decryption time
 - $\, \bullet \,$ time $\rightarrow \, {\it N} \,$ (number of iterations in the key equation solving EEA)

•
$$N = 1 \rightarrow \sum_{i=1}^{4} \epsilon_i \neq 0$$

•
$$N = 0 \to \sum_{i=1}^{4} \epsilon_i = 0$$

two Problems:

insufficient information

practicality as timing attack left open

- previous work (PQCrypto 2010, Strenzke):
 - input w = 4 error vectors \rightarrow measure decryption time
 - ullet time ullet N (number of iterations in the key equation solving EEA)
 - $N=1 \rightarrow \sum_{i=1}^4 \epsilon_i \neq 0$
 - $N = 0 \to \sum_{i=1}^{4} \epsilon_i = 0$
 - two Problems:
 - insufficient information
 - practicality as timing attack left open

- previous work (PQCrypto 2010, Strenzke):
 - input w = 4 error vectors \rightarrow measure decryption time
 - ullet time ullet N (number of iterations in the key equation solving EEA)
 - $N=1 \rightarrow \sum_{i=1}^4 \epsilon_i \neq 0$
 - $N = 0 \to \sum_{i=1}^{4} \epsilon_i = 0$
 - two Problems:
 - insufficient information
 - practicality as timing attack left open

- previous work (PQCrypto 2010, Strenzke):
 - input w = 4 error vectors \rightarrow measure decryption time
 - $\, \bullet \,$ time $\rightarrow \, {\it N} \,$ (number of iterations in the key equation solving EEA)
 - $N=1 \rightarrow \sum_{i=1}^4 \epsilon_i \neq 0$
 - $N = 0 \to \sum_{i=1}^{4} \epsilon_i = 0$
 - two Problems:
 - insufficient information
 - practicality as timing attack left open

- 1 Introduction
- 2 Preliminaries
- 3 Previous Work
- 4 New Vulnerabilities
- 5 Building the Attack
- 6 Experimental Results
- 7 Countermeasures
- 8 Conclusion

$$S(Y) \equiv \sum_{i=1}^{w} \frac{1}{Y \oplus \epsilon_i} \equiv \frac{\Omega(Y)}{\sigma(Y)} \mod g(Y)$$

- Known about the syndrome inversion EEA: If $w \le t/2$
- then break once $\deg(r_i(Y)) \leq (t/2) 1$
- to find $\sigma(Y)$ as the output of EEA
- ullet ightarrow information about an intermediate iteration

$$S(Y) \equiv \sum_{i=1}^{w} \frac{1}{Y \oplus \epsilon_i} \equiv \frac{\Omega(Y)}{\sigma(Y)} \mod g(Y)$$

- Known about the syndrome inversion EEA: If $w \le t/2$
- then break once $\deg(r_i(Y)) \leq (t/2) 1$
- ullet to find $\sigma(Y)$ as the output of EEA
- ullet ightarrow information about an intermediate iteration

$$S(Y) \equiv \sum_{i=1}^{w} \frac{1}{Y \oplus \epsilon_i} \equiv \frac{\Omega(Y)}{\sigma(Y)} \mod g(Y)$$

- Known about the syndrome inversion EEA: If $w \le t/2$
- then break once $\deg(r_i(Y)) \leq (t/2) 1$
- to find $\sigma(Y)$ as the output of EEA
- \circ \rightarrow information about an intermediate iteration

$$S(Y) \equiv \sum_{i=1}^{w} \frac{1}{Y \oplus \epsilon_i} \equiv \frac{\Omega(Y)}{\sigma(Y)} \mod g(Y)$$

- Known about the syndrome inversion EEA: If $w \le t/2$
- then break once $\deg(r_i(Y)) \leq (t/2) 1$
- to find $\sigma(Y)$ as the output of EEA
- \circ \rightarrow information about an intermediate iteration

$$S(Y) \equiv \sum_{i=1}^{w} \frac{1}{Y \oplus \epsilon_i} \equiv \frac{\Omega(Y)}{\sigma(Y)} \mod g(Y)$$

- Known about the syndrome inversion EEA: If $w \le t/2$
- then break once $\deg(r_i(Y)) \leq (t/2) 1$
- to find $\sigma(Y)$ as the output of EEA
- \circ \rightarrow information about an intermediate iteration

1:
$$b_{-1} \leftarrow 0$$
, $b_0 \leftarrow 1$, $r_{-1} \leftarrow g(Y)$, $r_0 \leftarrow S(Y)$, $i \leftarrow 0$

2: **while** $\deg(r_i) > 0$ **do**

3:
$$i \leftarrow i + 1$$

4:
$$(q_i(Y), r_i(Y)) \leftarrow r_{i-2}(Y)/r_{i-1}(Y)$$

5:
$$b_i(Y) \leftarrow b_{i-2}(Y) + q_i(Y)b_{i-1}(Y)$$

we know:
$$\exists i : \sigma(Y) = b_i(Y) \land \Omega(Y) = r_i(Y)$$

$$S(Y) \equiv \sum_{i=1}^{4} \frac{1}{Y \oplus \epsilon_i} \equiv \frac{\Omega(Y)}{\sigma(Y)} \equiv \frac{\sigma_3 Y^2 \oplus \sigma_1}{Y^4 \oplus \sigma_3 Y^3 \oplus \sigma_2 Y^2 \oplus \sigma_1 Y \oplus \sigma_0} \mod g(Y)$$

			t-2
			t-3
			t-4
4			2 0
	t - 6	t - 2	
		t - 1	

$$\sigma_3 = \epsilon_1 \oplus \epsilon_2 \oplus \epsilon_3 \oplus \epsilon_4 = 0 \Rightarrow i = 5, 6 \text{ skipped}$$

1:
$$b_{-1} \leftarrow 0$$
, $b_0 \leftarrow 1$, $r_{-1} \leftarrow g(Y)$, $r_0 \leftarrow S(Y)$, $i \leftarrow 0$

2: **while** $\deg(r_i) > 0$ **do**

3:
$$i \leftarrow i + 1$$

4:
$$(q_i(Y), r_i(Y)) \leftarrow r_{i-2}(Y)/r_{i-1}(Y)$$

5:
$$b_i(Y) \leftarrow b_{i-2}(Y) + q_i(Y)b_{i-1}(Y)$$

we know:
$$\exists i : \sigma(Y) = b_i(Y) \land \Omega(Y) = r_i(Y)$$

$$S(Y) \equiv \sum_{i=1}^{4} \frac{1}{Y \oplus \epsilon_{i}} \equiv \frac{\Omega(Y)}{\sigma(Y)} \equiv \frac{\sigma_{3} Y^{2} \oplus \sigma_{1}}{Y^{4} \oplus \sigma_{3} Y^{3} \oplus \sigma_{2} Y^{2} \oplus \sigma_{1} Y \oplus \sigma_{0}} \bmod g(Y)$$

			t-2
			t-3
			t-4
4			2 0
	t - 6	t - 2	
		t - 1	

$$\sigma_3 = \epsilon_1 \oplus \epsilon_2 \oplus \epsilon_3 \oplus \epsilon_4 = 0 \Rightarrow i = 5, 6 \text{ skipped}$$

1:
$$b_{-1} \leftarrow 0$$
, $b_0 \leftarrow 1$, $r_{-1} \leftarrow g(Y)$, $r_0 \leftarrow S(Y)$, $i \leftarrow 0$

2: **while**
$$\deg(r_i) > 0$$
 do

3:
$$i \leftarrow i + 1$$

4:
$$(q_i(Y), r_i(Y)) \leftarrow r_{i-2}(Y)/r_{i-1}(Y)$$

5:
$$b_i(Y) \leftarrow b_{i-2}(Y) + q_i(Y)b_{i-1}(Y)$$

we know:
$$\exists i : \sigma(Y) = b_i(Y) \land \Omega(Y) = r_i(Y)$$

$$S(Y) \equiv \sum_{i=1}^{4} \frac{1}{Y \oplus \epsilon_i} \equiv \frac{\Omega(Y)}{\sigma(Y)} \equiv \frac{\sigma_3 Y^2 \oplus \sigma_1}{Y^4 \oplus \sigma_3 Y^3 \oplus \sigma_2 Y^2 \oplus \sigma_1 Y \oplus \sigma_0} \mod g(Y)$$

			t-2
			t-3
			t-4
4			2 0
	t - 6	t - 2	
		t - 1	

$$\sigma_3 = \epsilon_1 \oplus \epsilon_2 \oplus \epsilon_3 \oplus \epsilon_4 = 0 \Rightarrow i = 5, 6 \text{ skipped}$$

1:
$$b_{-1} \leftarrow 0$$
, $b_0 \leftarrow 1$, $r_{-1} \leftarrow g(Y)$, $r_0 \leftarrow S(Y)$, $i \leftarrow 0$

2: **while**
$$\deg(r_i) > 0$$
 do

3:
$$i \leftarrow i + 1$$

4:
$$(q_i(Y), r_i(Y)) \leftarrow r_{i-2}(Y)/r_{i-1}(Y)$$

5:
$$b_i(Y) \leftarrow b_{i-2}(Y) + q_i(Y)b_{i-1}(Y)$$

we know:
$$\exists i : \sigma(Y) = b_i(Y) \land \Omega(Y) = r_i(Y)$$

$$S(Y) \equiv \sum_{i=1}^{4} \frac{1}{Y \oplus \epsilon_i} \equiv \frac{\Omega(Y)}{\sigma(Y)} \equiv \frac{\sigma_3 Y^2 \oplus \sigma_1}{Y^4 \oplus \sigma_3 Y^3 \oplus \sigma_2 Y^2 \oplus \sigma_1 Y \oplus \sigma_0} \mod g(Y)$$

i	$\deg(q_i(Y))$	$\deg(b_i(Y))$	$\deg(r_i(Y))$
1	1	1	t-2
2	1	2	t-3
3	1	3	t-4
4	1	4	2 0
5	t - 6	t - 2	1
6	1	t - 1	0

$$\sigma_3 = \epsilon_1 \oplus \epsilon_2 \oplus \epsilon_3 \oplus \epsilon_4 = 0 \Rightarrow i = 5, 6 \text{ skipped}$$

1:
$$b_{-1} \leftarrow 0$$
, $b_0 \leftarrow 1$, $r_{-1} \leftarrow g(Y)$, $r_0 \leftarrow S(Y)$, $i \leftarrow 0$

2: **while**
$$\deg(r_i) > 0$$
 do

3:
$$i \leftarrow i + 1$$

4:
$$(q_i(Y), r_i(Y)) \leftarrow r_{i-2}(Y)/r_{i-1}(Y)$$

5:
$$b_i(Y) \leftarrow b_{i-2}(Y) + q_i(Y)b_{i-1}(Y)$$

we know:
$$\exists i : \sigma(Y) = b_i(Y) \land \Omega(Y) = r_i(Y)$$

$$S(Y) \equiv \sum_{i=1}^{4} \frac{1}{Y \oplus \epsilon_i} \equiv \frac{\Omega(Y)}{\sigma(Y)} \equiv \frac{\sigma_3 Y^2 \oplus \sigma_1}{Y^4 \oplus \sigma_3 Y^3 \oplus \sigma_2 Y^2 \oplus \sigma_1 Y \oplus \sigma_0} \mod g(Y)$$

i	$\deg(q_i(Y))$	$\deg(b_i(Y))$	$\deg(r_i(Y))$
1	1	1	t-2
2	1	2	t-3
3	1	3	t-4
4	1	4	2 0
5	t - 6	t - 2	1
6	1	t - 1	0

$$\sigma_3 = \epsilon_1 \oplus \epsilon_2 \oplus \epsilon_3 \oplus \epsilon_4 = 0 \Rightarrow i = 5,6$$
 skipped

1:
$$b_{-1} \leftarrow 0$$
, $b_0 \leftarrow 1$, $r_{-1} \leftarrow g(Y)$, $r_0 \leftarrow S(Y)$, $i \leftarrow 0$

2: **while**
$$\deg(r_i) > 0$$
 do

3:
$$i \leftarrow i + 1$$

4:
$$(q_i(Y), r_i(Y)) \leftarrow r_{i-2}(Y)/r_{i-1}(Y)$$

5:
$$b_i(Y) \leftarrow b_{i-2}(Y) + q_i(Y)b_{i-1}(Y)$$

we know:
$$\exists i : \sigma(Y) = b_i(Y) \land \Omega(Y) = r_i(Y)$$

$$S(Y) \equiv \sum_{i=1}^{4} \frac{1}{Y \oplus \epsilon_i} \equiv \frac{\Omega(Y)}{\sigma(Y)} \equiv \frac{\sigma_3 Y^2 \oplus \sigma_1}{Y^4 \oplus \sigma_3 Y^3 \oplus \sigma_2 Y^2 \oplus \sigma_1 Y \oplus \sigma_0} \mod g(Y)$$

i	$\deg(q_i(Y))$	$\deg(b_i(Y))$	$\deg(r_i(Y))$
1	1	1	t-2
2	1	2	t-3
3	1	3	t-4
4	1	4	2 0
5	t - 6	t - 2	1
6	1	t - 1	0

$$\sigma_3 = \epsilon_1 \oplus \epsilon_2 \oplus \epsilon_3 \oplus \epsilon_4 = 0 \Rightarrow i = 5,6$$
 skipped

Weight 6 Vulnerability

$$S(Y) \equiv \frac{\sigma_5 \, Y^4 \oplus \sigma_3 \, Y^2 \oplus \sigma_1}{Y^6 \oplus \sigma_5 \, Y^5 \oplus \sigma_4 \, Y^4 \oplus \sigma_3 \, Y^3 \oplus \sigma_2 \, Y^2 \oplus \sigma_1 \, Y + \sigma_0} \bmod g(Y),$$

•
$$\sigma_5 = \sum_{i=1}^{6} \epsilon_i$$

• $\sigma_3 = \sum_{j=3}^{6} \sum_{k=1}^{j-1} \sum_{l=1}^{k-1} \epsilon_j \epsilon_k \epsilon_l$

Weight 6 Vulnerability

$$S(Y) \equiv \frac{\sigma_5 Y^4 \oplus \sigma_3 Y^2 \oplus \sigma_1}{Y^6 \oplus \sigma_5 Y^5 \oplus \sigma_4 Y^4 \oplus \sigma_3 Y^3 \oplus \sigma_2 Y^2 \oplus \sigma_1 Y + \sigma_0} \bmod g(Y),$$

Weight 1 Vulnerability

- if $\epsilon_1=0$, one fewer iteration in polynomial division inside the syndrome inversion EEA
- z with $\alpha_z = 0$ becomes known

Weight 1 Vulnerability

- if $\epsilon_1=0$, one fewer iteration in polynomial division inside the syndrome inversion EEA
- z with $\alpha_z = 0$ becomes known

- 1 Introduction
- 2 Preliminaries
- 3 Previous Work
- 4 New Vulnerabilities
- 5 Building the Attack
- 6 Experimental Results
- 7 Countermeasures
- 8 Conclusion

- always: maximal rank from w = 4 is n m 1
- most of the times: knowledge about z (with $\alpha_z=0$) increases rank to n-m

• $\alpha_i = \sum_{i \in B_i} \beta_i$

- always: maximal rank from w = 4 is n m 1
- \bullet most of the times: knowledge about z (with $\alpha_{\rm z}=0)$ increases rank to n-m

• $\alpha_i = \sum_{i \in B_i} \beta_i$

- always: maximal rank from w = 4 is n m 1
- most of the times: knowledge about z (with $\alpha_z=0$) increases rank to n-m

α_{0}	α_1	 α_i	 α_{n-m-3}	α_{n-m-2}	β_0	 β_{m-1}
1	0	 0	 0	0	X	 X
:				0		
0	0	 0	 0	1	X	 X

•
$$\alpha_i = \sum_{j \in B_i} \beta_j$$

- always: maximal rank from w = 4 is n m 1
- most of the times: knowledge about z (with $\alpha_z=0$) increases rank to n-m

α_{0}	α_1	 α_i	 α_{n-m-3}	α_{n-m-2}	β_0	 β_{m-1}
1	0	 0	 0	0	X	 X
:				0		
:				1		

•
$$\alpha_i = \sum_{j \in B_i} \beta_j$$

$$\Omega(Y) = \sigma_5 Y^4 \oplus \sigma_3 Y^2 \oplus \sigma_1$$

$$C_1: \quad \beta_3 \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \beta_2$$

$$C_2: \quad \beta_4 \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \beta_2, \quad \beta_3$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$C_{m-3}: \quad \beta_{m-1} \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \dots \quad \beta_{m-2}$$

- for i = 1, ..., 6: $\epsilon_i \in \text{span}(\beta_0, \beta_1, \beta_2, \beta_3)$
- $\sigma_5 = \sum_{j=1}^6 \epsilon_j = \sum_{j=1}^6 \sum_{i \in B_{f_j}} \beta_i = 0 \Leftrightarrow \text{count of each } \beta_i \text{ across } \epsilon_i$ even
- $\sigma_3 = \sum_{j=3}^6 \sum_{k=1}^{j-1} \sum_{l=1}^{k-1} \epsilon_j \epsilon_k \epsilon_l = 0$ (through timing)

$$\bullet \to \sum_{j=3}^{6} \sum_{k=1}^{j-1} \sum_{l=1}^{k-1} \left(\sum_{i \in B_{f_i}} \beta_i \right) \left(\sum_{i \in B_{f_k}} \beta_i \right) \left(\sum_{i \in B_{f_i}} \beta_i \right) = 0$$

• count of β_3 is 2

$$a\beta_3^2 + b\beta_3 + c = 0$$

$$\Omega(Y) = \sigma_5 Y^4 \oplus \sigma_3 Y^2 \oplus \sigma_1$$

$$C_1: \quad \beta_3 \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \beta_2$$

$$C_2: \quad \beta_4 \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \beta_2, \quad \beta_3$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$C_{m-3}: \quad \beta_{m-1} \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \dots \quad \beta_{m-2}$$

- for i = 1, ..., 6: $\epsilon_i \in \text{span}(\beta_0, \beta_1, \beta_2, \beta_3)$
- $\sigma_5 = \sum_{j=1}^6 \epsilon_j = \sum_{j=1}^6 \sum_{i \in B_{f_j}} \beta_i = 0 \Leftrightarrow \text{count of each } \beta_i \text{ across } \epsilon_i$ even
- $\sigma_3 = \sum_{j=3}^6 \sum_{k=1}^{j-1} \sum_{l=1}^{k-1} \epsilon_j \epsilon_k \epsilon_l = 0$ (through timing)
- $\bullet \to \sum_{j=3}^{6} \sum_{k=1}^{j-1} \sum_{l=1}^{k-1} \left(\sum_{i \in B_{f_i}} \beta_i \right) \left(\sum_{i \in B_{f_k}} \beta_i \right) \left(\sum_{i \in B_{f_i}} \beta_i \right) = 0$
- count of β_3 is 2

$$a\beta_3^2 + b\beta_3 + c = 0$$

$$\Omega(Y) = \sigma_5 Y^4 \oplus \sigma_3 Y^2 \oplus \sigma_1$$

$$C_1: \quad \beta_3 \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \beta_2$$

$$C_2: \quad \beta_4 \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \beta_2, \quad \beta_3$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$C_{m-3}: \quad \beta_{m-1} \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \dots \quad \beta_{m-2}$$

- for i = 1, ..., 6: $\epsilon_i \in \text{span}(\beta_0, \beta_1, \beta_2, \beta_3)$
- $\sigma_5 = \sum_{j=1}^6 \epsilon_j = \sum_{j=1}^6 \sum_{i \in B_{f_j}} \beta_i = 0 \Leftrightarrow \text{count of each } \beta_i \text{ across } \epsilon_i$ even
- $\sigma_3 = \sum_{j=3}^6 \sum_{k=1}^{j-1} \sum_{l=1}^{k-1} \epsilon_j \epsilon_k \epsilon_l = 0$ (through timing)
- $\bullet \to \sum_{j=3}^{6} \sum_{k=1}^{j-1} \sum_{l=1}^{k-1} \left(\sum_{i \in B_{f_i}} \beta_i \right) \left(\sum_{i \in B_{f_k}} \beta_i \right) \left(\sum_{i \in B_{f_i}} \beta_i \right) = 0$
- count of β_3 is 2

$$a\beta_3^2 + b\beta_3 + c = 0$$

$$\Omega(Y) = \sigma_5 Y^4 \oplus \sigma_3 Y^2 \oplus \sigma_1$$

$$C_1: \quad \beta_3 \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \beta_2$$

$$C_2: \quad \beta_4 \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \beta_2, \quad \beta_3$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$C_{m-3}: \quad \beta_{m-1} \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \dots \quad \beta_{m-2}$$

- for i = 1, ..., 6: $\epsilon_i \in \text{span}(\beta_0, \beta_1, \beta_2, \beta_3)$
- $\sigma_5 = \sum_{j=1}^6 \epsilon_j = \sum_{j=1}^6 \sum_{i \in B_{f_j}} \beta_i = 0 \Leftrightarrow \text{count of each } \beta_i \text{ across } \epsilon_i$ even
- $\sigma_3 = \sum_{j=3}^6 \sum_{k=1}^{j-1} \sum_{l=1}^{k-1} \epsilon_j \epsilon_k \epsilon_l = 0$ (through timing)
- $\bullet \to \sum_{j=3}^{6} \sum_{k=1}^{j-1} \sum_{l=1}^{k-1} \left(\sum_{i \in B_{f_j}} \beta_i \right) \left(\sum_{i \in B_{f_k}} \beta_i \right) \left(\sum_{i \in B_{f_j}} \beta_i \right) = 0$
- count of β_3 is 2

$$a\beta_3^2 + b\beta_3 + c = 0$$

$$\Omega(Y) = \sigma_5 Y^4 \oplus \sigma_3 Y^2 \oplus \sigma_1$$

$$C_1: \quad \beta_3 \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \beta_2$$

$$C_2: \quad \beta_4 \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \beta_2, \quad \beta_3$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$C_{m-3}: \quad \beta_{m-1} \quad \leftarrow \quad \beta_0, \quad \beta_1, \quad \dots \quad \beta_{m-2}$$

- for i = 1, ..., 6: $\epsilon_i \in \text{span}(\beta_0, \beta_1, \beta_2, \beta_3)$
- $\sigma_5 = \sum_{j=1}^6 \epsilon_j = \sum_{j=1}^6 \sum_{i \in B_{f_j}} \beta_i = 0 \Leftrightarrow \text{count of each } \beta_i \text{ across } \epsilon_i$ even
- $\sigma_3 = \sum_{j=3}^6 \sum_{k=1}^{j-1} \sum_{l=1}^{k-1} \epsilon_j \epsilon_k \epsilon_l = 0$ (through timing)
- $\bullet \to \sum_{j=3}^{6} \sum_{k=1}^{j-1} \sum_{l=1}^{k-1} \left(\sum_{i \in B_{f_j}} \beta_i \right) \left(\sum_{i \in B_{f_k}} \beta_i \right) \left(\sum_{i \in B_{f_j}} \beta_i \right) = 0$
- count of β_3 is 2:

$$a\beta_3^2 + b\beta_3 + c = 0$$

4 D > 4 A > 4 B > 4 B >

$$\beta_0 = \mathbf{x} = 0 \dots 0001, \quad \beta_1 = \mathbf{y} = 0 \dots 0010, \quad \beta_2 = \mathbf{z} = 0 \dots 0100$$

$$a\beta_3^2 + b\beta_3 + c = 0 \rightarrow \qquad C_{1,1} \quad C_{1,2} \quad C_{1,3}$$

$$\beta_3 = a \qquad \qquad \beta_3 = b$$

$$\downarrow \qquad \qquad \downarrow \text{true}$$

$$\beta_3 = a \qquad \qquad \downarrow \qquad \downarrow \text{true}$$

$$\beta_3 = a \qquad \qquad \downarrow \qquad \downarrow \text{true}$$

$$\beta_3 = b \qquad \qquad \downarrow \text{true}$$

$$\beta_3 = b \qquad \qquad \downarrow \text{true}$$

$$\beta_4 = c \quad \beta_4 = d \quad \beta_4 = e \qquad \beta_4 = f \qquad \beta_4 = h$$

$$d \notin \text{span}(\{\mathbf{a}, \mathbf{x}, \mathbf{y}, \mathbf{z}\})? \qquad f \notin \text{span}(\{\mathbf{b}, \mathbf{x}, \mathbf{y}, \mathbf{z}\})? \qquad h \notin \text{span}(\{\mathbf{b}, \mathbf{x}, \mathbf{y}, \mathbf{z}\})?$$

$$\downarrow \text{true} \qquad \qquad \downarrow \text{false} \qquad \qquad \downarrow \text{true}$$

4 D > 4 A > 4 B > 4 B >

4 D > 4 A > 4 B > 4 B >

- 1 Introduction
- 2 Preliminaries
- 3 Previous Work
- 4 New Vulnerabilities
- 5 Building the Attack
- 6 Experimental Results
- 7 Countermeasures
- 8 Conclusion

Experimental Results

	m = 9, $t = 33$	m = 10, $t = 40$
cycles gap $w=1$	≈ 400	≈ 600
cycles gap $w = 4$	$\approx 13,000$	$\approx 19,000$
cycles gap $w = 6$	≈ 17,000	≈ 23,000
number of queries for $w=1$	3,575,494	11,782,695
number of queries for $w = 4$	1,517,253	2,869,424
number of queries for $w = 6$	374,927	1,837,125
(worst case) number of final	≈ 8,000	≈ 2,000
verifications		
(worst case) running time for	3h	28h
solving on 1 GHz x86 CPU		

w = 6 equation counts were 1, 2, 4, 8, 16, 16...

- 1 Introduction
- 2 Preliminaries
- 3 Previous Work
- 4 New Vulnerabilities
- 5 Building the Attack
- 6 Experimental Results
- 7 Countermeasures
- 8 Conclusion

- try to achieve constant execution time for EEA
 - very difficult in software
- enforce constant running time for low weight ciphertexts through delay
 - doesn't cover power analysis
- add (pseudo) random error before decryption
 - change security level resp. code parameters acceptance?
 - interaction with other countermeasures?

- try to achieve constant execution time for EEA
 - very difficult in software
- enforce constant running time for low weight ciphertexts through delay
 - doesn't cover power analysis
- add (pseudo) random error before decryption
 - change security level resp. code parameters acceptance?
 interaction with other countermeasures?

- try to achieve constant execution time for EEA
 - very difficult in software
- enforce constant running time for low weight ciphertexts through delay
 - doesn't cover power analysis
- add (pseudo) random error before decryption
 - change security level resp. code parameters acceptance?
 interaction with other countermeasures?

- try to achieve constant execution time for EEA
 - very difficult in software
- enforce constant running time for low weight ciphertexts through delay
 - doesn't cover power analysis
- add (pseudo) random error before decryption
 - change security level resp. code parameters acceptance interaction with other countermeasures?

- try to achieve constant execution time for EEA
 - very difficult in software
- enforce constant running time for low weight ciphertexts through delay
 - doesn't cover power analysis
- add (pseudo) random error before decryption
 - change security level resp. code parameters acceptance?
 - interaction with other countermeasures?

- try to achieve constant execution time for EEA
 - very difficult in software
- enforce constant running time for low weight ciphertexts through delay
 - doesn't cover power analysis
- add (pseudo) random error before decryption
 - change security level resp. code parameters acceptance?
 - interaction with other countermeasures:

- try to achieve constant execution time for EEA
 - very difficult in software
- enforce constant running time for low weight ciphertexts through delay
 - doesn't cover power analysis
- add (pseudo) random error before decryption
 - change security level resp. code parameters acceptance?
 - interaction with other countermeasures?

- 1 Introduction
- 2 Preliminaries
- 3 Previous Work
- 4 New Vulnerabilities
- 5 Building the Attack
- 6 Experimental Results
- 7 Countermeasures
- 8 Conclusion

- practical attack against secret permutation / support
- medium computational effort
- ullet potential for remote attack (maybe without w=1, i.e. $lpha_z$)
- first practical key-aimed timing attack against code-based cryptosystems
- related work of mine: for a specific choice of the root-finding algorithm practical key-aimed attacks also seem likely

- practical attack against secret permutation / support
- medium computational effort
- ullet potential for remote attack (maybe without w=1, i.e. $lpha_z$)
- first practical key-aimed timing attack against code-based cryptosystems
- related work of mine: for a specific choice of the root-finding algorithm practical key-aimed attacks also seem likely

- practical attack against secret permutation / support
- medium computational effort
- potential for remote attack (maybe without w=1, i.e. α_z)
- first practical key-aimed timing attack against code-based cryptosystems
- related work of mine: for a specific choice of the root-finding algorithm practical key-aimed attacks also seem likely

- practical attack against secret permutation / support
- medium computational effort
- potential for remote attack (maybe without w=1, i.e. α_z)
- first practical key-aimed timing attack against code-based cryptosystems
- related work of mine: for a specific choice of the root-finding algorithm practical key-aimed attacks also seem likely

- practical attack against secret permutation / support
- medium computational effort
- potential for remote attack (maybe without w=1, i.e. α_z)
- first practical key-aimed timing attack against code-based cryptosystems
- related work of mine: for a specific choice of the root-finding algorithm practical key-aimed attacks also seem likely

Thank you!